tubulin polymerization

微管聚合
  • 文章类型: Journal Article
    努力开发潜在的抗癌剂,合成了一系列新的咪唑并[1,2-a]吡啶-恶二唑杂化物,并评估了其对肺癌(A549)和前列腺癌(PC-3,DU-145)细胞系的体外抗癌活性。在测试的化合物中,图6d显示对A549细胞的最高效力,IC50值为2.8±0.02μM。化合物6d处理的A549细胞的流式细胞术分析通过膜联蛋白-v/PI双重染色测定显示凋亡诱导,并且还分析了6d对细胞周期不同阶段的影响。基于靶标的研究证明了在3.45±0.51μM的IC50值下6d抑制微管蛋白聚合及其与CT-DNA的有效结合。Further,分子建模研究表明,6d对α/β微管蛋白受体具有显着的结合亲和力,具有令人钦佩的物理化学性质。
    Efforts towards the development of potential anticancer agents, a new series of imidazo[1,2-a]pyridine-oxadiazole hybrids were synthesized and evaluated for their in vitro anticancer activity against lung cancer (A549) and prostate cancer (PC-3, DU-145) cell lines. Amongst the compounds tested, 6d showed the highest potency on A549 cells with an IC50 value of 2.8 ± 0.02 μM. Flow cytometric analysis of compound 6d treated A549 cells showed apoptosis induction by annexin-v/PI dual staining assay and the effect of 6d on different phases of cell cycle was also analyzed. Target based studies demonstrated the inhibition of tubulin polymerization by 6d at an IC50 value of 3.45 ± 0.51 μM and its effective binding with CT-DNA. Further, the molecular modelling studies revealed that 6d has a prominent binding affinity towards α/β-tubulin receptor with admirable physico-chemical properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    A series of indole-derived methoxylated chalcones were described as anti-dermatophyte agents. The in vitro antifungal susceptibility testing against different dermatophytes revealed that most of compounds had potent activity against the dermatophyte strains. In particular, the 4-ethoxy derivative 4d with MIC values of 0.25-2 μg/ml was the most potent compound against Trichophyton interdigitale, Trichophyton veruccosum and Microsporum fulvum. Moreover, the 4-butoxy analog 4i displaying MIC values in the range of 1-16 μg/ml had the highest inhibitory activity against Trichophyton mentagrophytes, Microsporum canis, and Arthroderma benhamiae. To predict whether the synthesized compounds interact with tubulin binding site of dermatophytes, the 3D-structure of target protein was modeled by homology modeling and then used for molecular docking and molecular dynamics (MD) simulation studies. Docking simulation revealed that the promising compound 4d can properly bind with tubulin. The molecular dynamics analysis showed that interactions of compound 4d with the active site of target protein have binding stability throughout MD simulation. The results of this study could utilize in the design of more effective antifungal drugs with tubulin inhibition mechanism against keratinophilic fungi.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    A series of certain benzyl/phenethyl thiazolidinone-indole hybrids were synthesized for the study of anti-proliferative activity against A549, NCI-H460 (lung cancer), MDA-MB-231 (breast cancer), HCT-29 and HCT-15 (colon cancer) cell lines by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). We found that compound G37 displayed highest cytotoxicity with IC50 value of 0.92 ± 0.12 µM towards HCT-15 cancer cell line among all the synthesized compounds. Moreover, compound G37 was also tested on normal human lung epithelial cells (L132) and was found to be safe in contrast to HCT-15 cells. The lead compound G37 showed significant G2/M phase arrest in HCT-15 cells. Additionally, compound G37 significantly inhibited tubulin polymerization with IC50 value of 2.92 ± 0.23 µM. Mechanistic studies such as acridine orange/ethidium bromide (AO/EB) dual staining, DAPI nuclear staining, annexinV/propidium iodide dual staining, clonogenic growth inhibition assays inferred that compound G37 induced apoptotic cell death in HCT-15 cells. Moreover, loss of mitochondrial membrane potential with elevated intracellular ROS levels was observed by compound G37. These compounds bind at the active pocket of the α/β-tubulin with higher number of stable hydrogen bonds, hydrophobic and arene-cation interactions confirmed by molecular modeling studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号