skeletal muscle regeneration

骨骼肌再生
  • 文章类型: Journal Article
    Skeletal muscle injuries that occur from traumatic incidents, such as those caused by car accidents or surgical resections, or from injuries sustained on the battlefield, result in the loss of functionality of the injured muscle. To understand skeletal muscle regeneration and to better treat these large scale injuries, termed volumetric muscle loss (VML), in vivo injury models exploring the innate mechanisms of muscle injury and repair are essential for the creation of clinically applicable treatments. While the end result of a muscle injury is often the destruction of muscle tissue, the manner in which these injuries are induced as well as the response from the innate repair mechanisms found in muscle in each animal models can vary. This targeted review describes injury models that assess both skeletal muscle regeneration (i.e., the response of muscle to myotoxin or ischemic injury) and skeletal muscle repair (i.e., VML injury). We aimed to summarize the injury models used in the field of skeletal muscle tissue engineering, paying particular attention to strategies to induce muscle damage and how to standardize injury conditions for future experiments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    There is a growing recognition that myogenic stem cells are influenced by their microenvironment during regeneration. Several interstitial cell types have been described as supportive for myoblasts. In this role, both the pericyte as a possible progenitor for mesenchymal stem cells, and interstitial cells in the endomysium have been discussed. We have applied immunohistochemistry on normal and pathological human skeletal muscle using markers for pericytes, or progenitor cells and found a cell type co-expressing CD10, CD34, CD271, and platelet-derived growth factor receptor α omnipresent in the endomysium. The marker profile of these cells changed dynamically in response to muscle damage and atrophy, and they proliferated in response to damage. The cytology and expression profile of the CD10+ cells indicated a capacity to participate in myogenesis. Both morphology and indicated function of these cells matched properties of several previously described interstitial cell types. Our study suggests a limited number of cell types that could embrace many of these described cell types. Our study indicate that the CD10+, CD34+, CD271+, and platelet-derived growth factor receptor α+ cells could have a supportive role in human muscle regeneration, and thus the mechanisms by which they exert their influence could be implemented in stem cell therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号