random forest classifier

随机森林分类器
  • 文章类型: Comparative Study
    OBJECTIVE: Proper scoring of sleep stages can give clinical information on diagnosing patients with sleep disorders. Since traditional visual scoring of the entire sleep is highly time-consuming and dependent to experts\' experience, automatic schemes based on electroencephalogram (EEG) analysis are broadly developed to solve these problems. This review presents an overview on the most suitable methods in terms of preprocessing, feature extraction, feature selection and classifier adopted to precisely discriminate the sleep stages.
    METHODS: This study round up a wide range of research findings concerning the application of the sleep stage classification. The fundamental qualitative methods along with the state-of-the-art quantitative techniques for sleep stage scoring are comprehensively introduced. Moreover, according to the results of the investigated studies, five research papers are chosen and practically implemented on a well-known public available sleep EEG dataset. They are applied to single-channel EEG of 40 subjects containing equal number of healthy and patient individuals. Feature extraction and classification schemes are assessed in terms of accuracy and robustness against noise. Furthermore, an additional implementation phase is added to this research in which all combinations of the implemented features and classifiers are considered to find the best combination for sleep analysis.
    RESULTS: According to our achieved results on both groups, entropy of wavelet coefficients along with random forest classifier are chosen as the best feature and classifier, respectively. The mentioned feature and classifier provide 87.06% accuracy on healthy subjects and 69.05% on patient group.
    CONCLUSIONS: In this paper, the road map of EEG-base sleep stage scoring methods is clearly sketched. Implementing the state-of-the-art methods and even their combination on both healthy and patient datasets indicates that although the accuracy on healthy subjects are remarkable, the results for the main community (patient group) by the quantitative methods are not promising yet. The reasons rise from adopting non-matched sleep EEG features from other signal processing fields such as communication. As a conclusion, developing sleep pattern-related features deem necessary to enhance the performance of this process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The computational or in silico approaches for analysing the HIV-1-human protein-protein interaction (PPI) network, predicting different host cellular factors and PPIs and discovering several pathways are gaining popularity in the field of HIV research. Although there exist quite a few studies in this regard, no previous effort has been made to review these works in a comprehensive manner. Here we review the computational approaches that are devoted to the analysis and prediction of HIV-1-human PPIs. We have broadly categorized these studies into two fields: computational analysis of HIV-1-human PPI network and prediction of novel PPIs. We have also presented a comparative assessment of these studies and proposed some methodologies for discussing the implication of their results. We have also reviewed different computational techniques for predicting HIV-1-human PPIs and provided a comparative study of their applicability. We believe that our effort will provide helpful insights to the HIV research community.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号