nuclear localization

核定位
  • 文章类型: Journal Article
    Akirins, members of the NF-κB signaling pathway, are highly conserved nuclear proteins, which regulate gene expression in many physiological processes, including immunity, myogenesis, carcinogenesis, and embryogenesis. The akirin family in teleost fish consists of two to three genes. In the present study, three akirin genes from Hippocampus abdominalis were identified from a transcriptome database and designated as HaAkirin1, HaAkirin2(1), and HaAkirin2(2). The nuclear localization of HaAkirin1 and HaAkirin2(1) was confirmed by subcellular localization analysis. In contrast, diffused localization of HaAkirin2(2) was identified in the nucleus and cytoplasm that confirmed the aberrant nature of the nuclear localization signal. Phylogenetic analysis revealed a closer relationship of HaAkirins with other known teleost akirins. All three HaAkirin transcripts were ubiquitously expressed in all examined tissues with higher expression in ovary tissue. Immune challenge with LPS, poly I:C, and Streptococcus iniae exhibited a significant increase in the expression of all three HaAkirins in kidney and liver tissues. NF-κB luciferase assays revealed that relative luciferase activity was significantly higher for all three HaAkirin genes than mock controls. These results suggest that HaAkirin genes might play a role in regulating NF-κB dependent immune gene expression and their expression could be induced by bacterial and viral pathogen recognition molecular patterns.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Rice stripe virus (RSV), which belongs to the genus Tenuivirus, is an emergent virus problem. The RSV genome is composed of four single-strand RNAs (RNA1-RNA4) and encodes seven proteins. We investigated interactions between six of the RSV proteins by yeast-two hybrid (Y2H) assay in vitro and by bimolecular fluorescence complementation (BiFC) in planta. Y2H identified self-interaction of the nucleocapsid protein (NP) and NS3, while BiFC revealed self-interaction of NP, NS3, and NCP. To identify regions(s) and/or crucial amino acid (aa) residues required for NP self-interaction, we generated various truncated and aa substitution mutants. Y2H assay showed that the N-terminal region of NP (aa 1-56) is necessary for NP self-interaction. Further analysis with substitution mutants demonstrated that additional aa residues located at 42-47 affected their interaction with full-length NP. These results indicate that the N-terminal region (aa 1-36 and 42-47) is required for NP self-interaction. BiFC and co-localization studies showed that the region required for NP self-interaction is also required for NP localization at the nucleus. Overall, our results indicate that the N-terminal region (aa 1-47) of the NP is important for NP self-interaction and that six aa residues (42-47) are essential for both NP self-interaction and nuclear localization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号