high‐throughput screening

高通量筛选
  • 文章类型: Journal Article
    液体活检作为用于肿瘤分析的微创技术的发展已经产生了对从体液中有效的生物标志物提取系统的需求。循环无细胞DNA(cfDNA)的分析特别有前途,但是血浆中cfDNA的低含量和高片段化对其分离提出了挑战。虽然已经成功地建立了双水相系统(ATPS)用于提取和纯化各种生物分子的潜力,关于这些发现对短cfDNA样片段的适用性的文献有限。这项研究介绍了在pH7.4下,聚乙二醇(PEG)/盐ATPS中160bpDNA片段的分配行为。PEG分子量的影响,连接线长度,中性盐添加剂,和相体积比进行评估以最大化DNA回收。测试含有掺加人血清白蛋白和免疫球蛋白G的合成血浆溶液的选定ATPS,以确定DNA片段与主要血浆蛋白级分的分离。通过向17.7%(w/w)PEG400/17.3%(w/w)磷酸盐ATPS中加入1.5%(w/w)NaCl,在富含盐的底相中实现88%的DNA回收,同时超过99%的蛋白质被去除。
    The development of liquid biopsy as a minimally invasive technique for tumor profiling has created a need for efficient biomarker extraction systems from body fluids. The analysis of circulating cell-free DNA (cfDNA) is especially promising, but the low amounts and high fragmentation of cfDNA found in plasma pose challenges to its isolation. While the potential of aqueous two-phase systems (ATPS) for the extraction and purification of various biomolecules has already been successfully established, there is limited literature on the applicability of these findings to short cfDNA-like fragments. This study presents the partitioning behavior of a 160 bp DNA fragment in polyethylene glycol (PEG)/salt ATPS at pH 7.4. The effect of PEG molecular weight, tie-line length, neutral salt additives, and phase volume ratio is evaluated to maximize DNA recovery. Selected ATPS containing a synthetic plasma solution spiked with human serum albumin and immunoglobulin G are tested to determine the separation of DNA fragments from the main plasma protein fraction. By adding 1.5% (w/w) NaCl to a 17.7% (w/w) PEG 400/17.3% (w/w) phosphate ATPS, 88% DNA recovery was achieved in the salt-rich bottom phase while over 99% of the protein was removed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在19世纪末,染料化学的进步导致了德国工业有机化学的进步。在接下来的几十年里,这揭示了染料不仅可以作为着色剂,而且可以作为药物开发的有前途的先导化合物。染料化学家和医学研究人员之间的合作对于将这些意外发现转化为结构化药物化学工作至关重要。结果包括主要药物类别,如磺胺类抗生素,抗真菌唑,和其他人,导致传统的染料不仅作为生物染色剂,而且作为理解复杂的天然产物和药物相互作用的关键工具。今天,染料分子的影响在临床治疗中持续存在,分子探测,药代动力学追踪,和高通量筛选。这篇综述强调了塑造当代药物科学的历史贡献,强调染料作为推动药物发现的不可或缺的工具的作用。
    In the late 19th century, progress in dye chemistry led to advances in industrial organic chemistry in Germany. Over the next few decades, this revealed dyes not just as color agents but as promising lead compounds for drug development. Collaborations between dye chemists and medical researchers were crucial in turning these unexpected discoveries into structured medicinal chemistry efforts. The outcomes included major drug classes like sulfa antibiotics, antifungal azoles, and others, resulting in a legacy where dyes served not only as biological stains but as crucial tools for understanding complex natural products and drug interactions. Today, the impact of dye molecules persists in clinical therapies, molecular probing, pharmacokinetic tracing, and high-throughput screening. This review underscores the historical contributions shaping contemporary pharmaceutical sciences, highlighting the role of dyes as indispensable tools propelling drug discovery across generations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    分子印迹聚合物(MIP)在疾病诊断和治疗中显示出作为抗体的有效替代品的重要前景。然而,筛选单体组合和合成条件的广泛文库以鉴定具有增强的选择性和亲和力的制剂的挑战性过程存在显著的时间限制。在加速为精确分子识别目的而定制的MIP的战略发展中,对权宜方法的需求变得显而易见。在这项研究中,提出了一种创新的高通量筛选方法,旨在确定靶向肿瘤的最佳MIP制剂.采用微量滴定板格式,进行了100多个聚合物合成,结合不同的组合的功能单体。结合性能的评估利用基于荧光的测定,关注表皮生长因子受体(EGFR)的表位。通过这个精心组织的筛选过程,鉴定了产生对EGFR靶向(KD=10-12μm)表现出基本特异性的MIP纳米颗粒的合成条件。这些“仿生抗体”显示了对全血样本中癌细胞的选择性识别,即使浓度低至5个细胞mL-1。通过荧光成像的进一步验证证实了MIP在体内的肿瘤特异性定位。这种高效的筛选方法促进了用作精密生物探针的印迹聚合物的战略合成。
    Molecularly imprinted polymers (MIPs) show significant promise as effective alternatives to antibodies in disease diagnosis and therapy. However, the challenging process of screening extensive libraries of monomer combinations and synthesis conditions to identify formulations with enhanced selectivity and affinity presents a notable time constraint. The need for expedient methods becomes clear in accelerating the strategic development of MIPs tailored for precise molecular recognition purposes. In this study, an innovative high-throughput screening methodology designed to identify the optimal MIP formulation for targeting tumors is presented. Employing a microtiter plate format, over 100 polymer syntheses are conducted, incorporating diverse combinations of functional monomers. Evaluation of binding performance utilizes fluorescence-based assays, focusing on an epitope of the epidermal growth factor receptor (EGFR). Through this meticulously structured screening process, synthesis conditions that produced MIP nanoparticles exhibiting substantial specificity for EGFR targeting (KD = 10-12 m) are identified. These \"bionic antibodies\" demonstrate selective recognition of cancer cells in whole blood samples, even at concentrations as low as 5 cells mL-1. Further validation through fluorescent imaging confirms the tumor-specific localization of the MIPs in vivo. This highly efficient screening approach facilitates the strategic synthesis of imprinted polymers functioning as precision bioprobes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    满足医疗保健和食品行业对快速精确营养分析的迫切需求,这项研究开创了视觉语言模型(VLM)与化学分析技术的集成。一款尖端的VLM亮相,利用扩展的UMDFood-90k数据库,显着提高养分估算过程的速度和准确性。显示用于脂质定量的0.921的宏AUCROC,与传统的化学分析相比,该模型对82%以上的分析食品显示出小于10%的方差。这种创新的方法不仅在学生中进行测试时将营养筛查速度提高了36.9%,而且在营养数据编制的精度方面树立了新的基准。这项研究标志着食品科学的重大飞跃,采用先进的计算模型和化学验证的混合,以提供快速,用于营养分析的高通量解决方案。
    Addressing the critical need for swift and precise nutritional profiling in healthcare and in food industry, this study pioneers the integration of vision-language models (VLMs) with chemical analysis techniques. A cutting-edge VLM is unveiled, utilizing the expansive UMDFood-90k database, to significantly improve the speed and accuracy of nutrient estimation processes. Demonstrating a macro-AUCROC of 0.921 for lipid quantification, the model exhibits less than 10% variance compared to traditional chemical analyses for over 82% of the analyzed food items. This innovative approach not only accelerates nutritional screening by 36.9% when tested amongst students but also sets a new benchmark in the precision of nutritional data compilation. This research marks a substantial leap forward in food science, employing a blend of advanced computational models and chemical validation to offer a rapid, high-throughput solution for nutritional analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物传感器是加速细胞工厂开发的设计-构建-测试-学习周期的测试阶段的宝贵工具,以及生物过程监测和控制。基于G蛋白偶联受体(GPCR)的生物传感器使细胞能够以特定方式感知各种分子和环境条件。由于它们感应的细胞外性质,基于GPCR的生物传感器在筛选菌株文库的生产水平时需要对不同的基因型进行区室化,以确保检测到的水平完全源自评估中的菌株。这里,我们探索生产和传感方式整合到一个单一的酿酒酵母菌株和分区使用三种不同的方法:(1)培养在微量滴定板,(2)在琼脂平板上的空间分离,和(3)封装在水包油包水双重乳液液滴中,结合分析和分选通过荧光激活细胞分选机。使用色胺和5-羟色胺作为概念验证目标分子,我们优化了生物传感条件,并证明了自分泌筛选方法丰富高生产者的能力,显示产生5-羟色胺的菌株比不产生的菌株富集。这些发现说明了一种工作流程,其可以适用于使用市售的微流体系统以高通量筛选宽范围的复杂化学。
    Biosensors are valuable tools in accelerating the test phase of the design-build-test-learn cycle of cell factory development, as well as in bioprocess monitoring and control. G protein-coupled receptor (GPCR)-based biosensors enable cells to sense a wide array of molecules and environmental conditions in a specific manner. Due to the extracellular nature of their sensing, GPCR-based biosensors require compartmentalization of distinct genotypes when screening production levels of a strain library to ensure that detected levels originate exclusively from the strain under assessment. Here, we explore the integration of production and sensing modalities into a single Saccharomyces cerevisiae strain and compartmentalization using three different methods: (1) cultivation in microtiter plates, (2) spatial separation on agar plates, and (3) encapsulation in water-in-oil-in-water double emulsion droplets, combined with analysis and sorting via a fluorescence-activated cell sorting machine. Employing tryptamine and serotonin as proof-of-concept target molecules, we optimize biosensing conditions and demonstrate the ability of the autocrine screening method to enrich for high producers, showing the enrichment of a serotonin-producing strain over a nonproducing strain. These findings illustrate a workflow that can be adapted to screening for a wide range of complex chemistry at high throughput using commercially available microfluidic systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    抗生素耐药性的迅速上升和新抗生素的缓慢发现已经威胁到全球健康。虽然新的噬菌体溶素已经成为潜在的抗菌剂,由于工作量巨大,新型溶素的实验筛选方法提出了重大挑战。这里,第一个统一软件包,即DeepLysin,开发的目的是利用人工智能来挖掘巨大的基因组库(“暗物质”)以寻找新型抗菌噬菌体溶素。从未表征的金黄色葡萄球菌噬菌体中计算筛选推定的溶素,并随机选择17种新型溶素进行实验验证。七个候选物表现出优异的体外抗菌活性,LLysSA9超过了同类最佳的替代品。LLysSA9的功效在小鼠血流和伤口感染模型中得到进一步证明。因此,这项研究证明了整合计算和实验方法的潜力,以加快发现新的抗菌蛋白,以对抗日益增长的抗菌素耐药性。
    The rapid rise of antibiotic resistance and slow discovery of new antibiotics have threatened global health. While novel phage lysins have emerged as potential antibacterial agents, experimental screening methods for novel lysins pose significant challenges due to the enormous workload. Here, the first unified software package, namely DeepLysin, is developed to employ artificial intelligence for mining the vast genome reservoirs (\"dark matter\") for novel antibacterial phage lysins. Putative lysins are computationally screened from uncharacterized Staphylococcus aureus phages and 17 novel lysins are randomly selected for experimental validation. Seven candidates exhibit excellent in vitro antibacterial activity, with LLysSA9 exceeding that of the best-in-class alternative. The efficacy of LLysSA9 is further demonstrated in mouse bloodstream and wound infection models. Therefore, this study demonstrates the potential of integrating computational and experimental approaches to expedite the discovery of new antibacterial proteins for combating increasing antimicrobial resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    D-氨基酸氧化酶(DAAO)催化的选择性氧化脱氨基是合成包括l-膦丝菌素在内的l-氨基酸的非常有前途的方法(l-PPT,高效广谱除草剂)。然而,野生型DAAO对非天然底物如d-膦丝菌素(d-PPT)的低活性阻碍了其应用。在这里,对来自秀丽隐杆线虫(CeDAAO)的DAAO进行筛选和改造,以提高d-PPT的催化潜力。首先,我们设计了一个新颖的生长选择系统,考虑到大肠杆菌生长之间的复杂关系(E.大肠杆菌)和DAAO的催化机理。所开发的系统用于基因文库的高通量筛选,导致发现具有显著增加的针对d-PPT的催化活性的变体(M6)。该变体在具有不同疏水性和亲水性的底物上显示不同的催化性质。使用Alphafold2建模和分子动力学模拟的分析表明,活性增强的原因是底物结合袋具有更大的尺寸和合适的电荷分布。进一步的QM/MM计算表明,增强活性的关键因素在于降低还原半反应的初始能垒。最后,一个综合的结合模型指数来预测DAAO对d-PPT的活性增强,并开发了一种酶促除菌方法,能够高效合成l-PPT。
    D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin (l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO\'s low activity toward unnatural substrates like d-phosphinothricin (d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    过氧化物酶体分隔化已成为重建复杂代谢途径的非常有前途的策略。近年来,通过利用前体池,过氧化物酶体取得了重大进展,规避代谢串扰,并将外源途径的细胞毒性降至最低。然而,重要的是要注意,在甲基营养酵母(例如巴斯德毕赤酵母)中,过氧化物酶体的丰度和蛋白质组成是高度可变的,特别是当过氧化物酶体增殖由特定碳源诱导时。复杂的天然蛋白质亚细胞定位,过氧化物酶体代谢途径的变异性,缺乏过氧化物酶体靶向信号的系统表征限制了过氧化物酶体区室化在巴斯德毕赤酵母中的应用。因此,本研究建立了基于β-胡萝卜素生物合成途径的高通量筛选方法,以评估PTS1s(过氧化物酶体靶向信号1型)在巴斯德毕赤酵母中的靶向效率。首先,对25个推定的内源性PTS1进行了表征,并鉴定了3个具有高靶向效率的PTS1。然后,通过构建两个PTS1突变体文库进行PTS1的定向进化,并确定了总共51个PTS1s(29个经典和22个非规范PTS1s),可能具有更高的过氧化物酶体靶向效率,其中一部分通过共聚焦显微镜进一步表征。最后,新鉴定的PTS1用于香叶醇生物合成途径的过氧化物酶体区室化,与该途径定位于胞质溶胶时相比,导致单萜滴度增加30%以上。本研究扩展了合成生物学工具包,为巴斯德毕赤酵母过氧化物酶体划分奠定了坚实的基础。
    Peroxisomal compartmentalization has emerged as a highly promising strategy for reconstituting intricate metabolic pathways. In recent years, significant progress has been made in the peroxisomes through harnessing precursor pools, circumventing metabolic crosstalk, and minimizing the cytotoxicity of exogenous pathways. However, it is important to note that in methylotrophic yeasts (e.g. Pichia pastoris), the abundance and protein composition of peroxisomes are highly variable, particularly when peroxisome proliferation is induced by specific carbon sources. The intricate subcellular localization of native proteins, the variability of peroxisomal metabolic pathways, and the lack of systematic characterization of peroxisome targeting signals have limited the applications of peroxisomal compartmentalization in P. pastoris. Accordingly, this study established a high-throughput screening method based on β-carotene biosynthetic pathway to evaluate the targeting efficiency of PTS1s (Peroxisome Targeting Signal Type 1) in P. pastoris. First, 25 putative endogenous PTS1s were characterized and 3 PTS1s with high targeting efficiency were identified. Then, directed evolution of PTS1s was performed by constructing two PTS1 mutant libraries, and a total of 51 PTS1s (29 classical and 22 noncanonical PTS1s) with presumably higher peroxisomal targeting efficiency were identified, part of which were further characterized via confocal microscope. Finally, the newly identified PTS1s were employed for peroxisomal compartmentalization of the geraniol biosynthetic pathway, resulting in more than 30% increase in the titer of monoterpene compared with when the pathway was localized to the cytosol. The present study expands the synthetic biology toolkit and lays a solid foundation for peroxisomal compartmentalization in P. pastoris.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于水凝胶的3D细胞培养物可以在体外概括(病理)生理现象。然而,由于它们复杂的多因素调节,使这些组织和疾病模型适应高通量筛查工作流程仍然具有挑战性.在这项研究中,一种新的精确文化缩放(PCS-X)方法将统计技术(实验设计和多元线性回归)与自动化,并行实验和分析,使用人脐静脉内皮细胞和视网膜微血管内皮细胞定制基于水凝胶的血管生成培养物。细胞密度的变化,系统地探索了生长因子的补充和培养基组成,以在384孔板格式的间充质基质细胞或视网膜微血管周细胞的内皮单培养物和共培养物中诱导血管生成。已开发的培养物显示以复合和剂量依赖性方式对血管生成抑制剂作出反应,展示了PCS-X在创建用于药物发现和个体化治疗的平行组织和疾病模型方面的范围和能力。本文受版权保护。保留所有权利。
    Hydrogel-based 3D cell cultures can recapitulate (patho)physiological phenomena ex vivo. However, due to their complex multifactorial regulation, adapting these tissue and disease models for high-throughput screening workflows remains challenging. In this study, a new precision culture scaling (PCS-X) methodology combines statistical techniques (design of experiment and multiple linear regression) with automated, parallelized experiments and analyses to customize hydrogel-based vasculogenesis cultures using human umbilical vein endothelial cells and retinal microvascular endothelial cells. Variations of cell density, growth factor supplementation, and media composition are systematically explored to induce vasculogenesis in endothelial mono- and cocultures with mesenchymal stromal cells or retinal microvascular pericytes in 384-well plate formats. The developed cultures are shown to respond to vasculogenesis inhibitors in a compound- and dose-dependent manner, demonstrating the scope and power of PCS-X in creating parallelized tissue and disease models for drug discovery and individualized therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发了3D生物打印的神经血管单元(NVU)模型,以研究类似脑微环境中的胶质母细胞瘤(GBM)肿瘤生长。NVU模型包括人类原代星形胶质细胞,周细胞和脑微血管内皮细胞,和患者来源的胶质母细胞瘤细胞(JHH-520)用于本研究。我们使用具有共聚焦高含量成像的荧光报告分子来定量实时微血管网络形成和肿瘤生长。NVU-GBM模型的广泛验证包括对脑相关细胞标志物和细胞外基质成分的免疫染色;单细胞RNA测序以建立生理相关转录组学变化;以及NVU和GBM相关细胞因子的分泌。scRNAseq揭示了与伤口愈合/血管生成相关的基因表达和细胞因子分泌的变化。包括内皮间充质转化(EndMT)细胞群的出现。NVU-GBM模型用于测试18种化学治疗剂和抗癌药物,以评估模型的药理学相关性和高通量筛选的稳健性。本文受版权保护。保留所有权利。
    A 3D bioprinted neurovascular unit (NVU) model is developed to study glioblastoma (GBM) tumor growth in a brain-like microenvironment. The NVU model includes human primary astrocytes, pericytes and brain microvascular endothelial cells, and patient-derived glioblastoma cells (JHH-520) are used for this study. Fluorescence reporters are used with confocal high content imaging to quantitate real-time microvascular network formation and tumor growth. Extensive validation of the NVU-GBM model includes immunostaining for brain relevant cellular markers and extracellular matrix components; single cell RNA sequencing (scRNAseq) to establish physiologically relevant transcriptomics changes; and secretion of NVU and GBM-relevant cytokines. The scRNAseq reveals changes in gene expression and cytokines secretion associated with wound healing/angiogenesis, including the appearance of an endothelial mesenchymal transition cell population. The NVU-GBM model is used to test 18 chemotherapeutics and anti-cancer drugs to assess the pharmacological relevance of the model and robustness for high throughput screening.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号