glycans

聚糖
  • 文章类型: Journal Article
    聚糖是广泛表达的糖,覆盖细胞和蛋白质表面。它们在许多蛋白质上被发现,无论是短链和支链还是长链,从特殊的膜蛋白中伸出来,被称为蛋白聚糖。这个糖垫,糖萼,调节特定的相互作用并保护细胞。这里显示蛋白聚糖的表达和在宿主和病毒蛋白两者的表面上表达的聚糖在调节病毒附着到细胞中具有关键作用。提出了一种使用SARS-Cov-2作为原型病毒研究聚糖在感染过程中的作用的数学模型。表明这是通过拉锯战发生的。在一边,病毒蛋白对特定宿主聚糖和受体的多价分子识别。在另一边,病毒接近这种特定受体必须克服的聚糖空间排斥。通过平衡两种相互作用,病毒嗜性是可以预测的。换句话说,作者可以根据受体和蛋白聚糖成分绘制出容易感染病毒的细胞。
    Glycans are ubiquitously expressed sugars, coating the cell and protein surfaces. They are found on many proteins as either short and branched chains or long chains sticking out from special membrane proteins, known as proteoglycans. This sugar cushion, the glycocalyx, modulates specific interactions and protects the cell. Here it is shown that both the expression of proteoglycans and the glycans expressed on the surface of both the host and virus proteins have a critical role in modulating viral attachment to the cell. A mathematical model using SARS-Cov-2 as an archetypical virus to study the glycan role during infection is proposed. It is shown that this occurs via a tug-of-war of forces. On one side, the multivalent molecular recognition that viral proteins have toward specific host glycans and receptors. On the other side, the glycan steric repulsion that a virus must overcome to approach such specific receptors. By balancing both interactions, viral tropism can be predicted. In other words, the authors can map out the cells susceptible to virus infection in terms of receptors and proteoglycans compositions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    分子动力学(MD)是一种用于计算原子和分子运动的方法,广泛应用于科学的多个方面。它涉及计算模拟,这使得它,乍一看,不容易接近。几种进行分子模拟的自动化工具的兴起使研究人员能够浏览MD的各个步骤。这使得能够阐明蛋白质的结构特性,否则无法分析,如糖基化的影响。糖基化决定了调节其溶解度的蛋白质的物理化学和生物学特性,稳定性,对蛋白水解的抗性,互动伙伴,酶活性,绑定和识别。鉴于聚糖链的高构象和组成多样性,使用常规分析技术评估它们对蛋白质结构的影响是具有挑战性的。在这份手稿中,我们提出了一个循序渐进的工作流程,以构建和执行针对SARS-CoV-2的SPIKE糖蛋白的糖蛋白MD分析,以评估聚糖在结构稳定和抗体闭塞中的影响.
    Molecular Dynamics (MD) is a method used to calculate the movement of atoms and molecules broadly applied to several aspects of science. It involves computational simulation, which makes it, at first glance, not easily accessible. The rise of several automated tools to perform molecular simulations has allowed researchers to navigate through the various steps of MD. This enables to elucidate structural properties of proteins that could not be analyzed otherwise, such as the impact of glycosylation. Glycosylation dictates the physicochemical and biological properties of a protein modulating its solubility, stability, resistance to proteolysis, interaction partners, enzymatic activity, binding and recognition. Given the high conformational and compositional diversity of the glycan chains, assessing their influence on the protein structure is challenging using conventional analytical techniques. In this manuscript, we present a step-by-step workflow to build and perform MD analysis of glycoproteins focusing on the SPIKE glycoprotein of SARS-CoV-2 to appraise the impact of glycans in structure stabilization and antibody occlusion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人们对病毒的普遍看法是,它们在大小和基因组方面都很小,他们劫持宿主机器糖基化衣壳。巨型病毒颠覆了所有这些概念:它们的颗粒不小,它们的基因组比某些细菌的基因组更复杂。关于糖基化,这一概念已经受到以下发现的挑战:氯病毒具有自主的糖基化机制,产生的寡糖的大小与小病毒(6-12个单位)相似,尽管在结构上与病毒对应物不同。我们在此报告,Mimivirus拥有由两种不同的多糖制成的糖萼,现在挑战的概念,所有的病毒包被他们的衣壳离散大小的寡糖。这一发现与病毒中不存在此类大分子的范式相矛盾,模糊巨型病毒和细胞世界之间的界限,并在病毒糖生物学领域开辟新的途径。
    The general perception of viruses is that they are small in terms of size and genome, and that they hijack the host machinery to glycosylate their capsid. Giant viruses subvert all these concepts: their particles are not small, and their genome is more complex than that of some bacteria. Regarding glycosylation, this concept has been already challenged by the finding that Chloroviruses have an autonomous glycosylation machinery that produces oligosaccharides similar in size to those of small viruses (6-12 units), albeit different in structure compared to the viral counterparts. We report herein that Mimivirus possesses a glycocalyx made of two different polysaccharides, now challenging the concept that all viruses coat their capsids with oligosaccharides of discrete size. This discovery contradicts the paradigm that such macromolecules are absent in viruses, blurring the boundaries between giant viruses and the cellular world and opening new avenues in the field of viral glycobiology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号