embryonic stem cells

胚胎干细胞
  • 文章类型: Journal Article
    In vitro tests are increasingly applied in chemical hazard assessment. Basic culture conditions may affect the outcome of in vitro tests and should be optimised to reduce false predictions. The neural embryonic stem cell test (ESTn) can predict early neurodevelopmental effects of chemicals, as it mimics the differentiation of stem cells towards the neuroectodermal lineage. Normal early neural differentiation depends crucially on folic acid (FA) and methionine (MET), both elements of the one-carbon (1C) cycle. The aim of this study was to assess the concentration-dependent influence of FA and MET on neural differentiation in the ESTn, and its consequences for assay sensitivity to methotrexate (MTX), a compound that interferes with the 1C cycle. Neural differentiation was inhibited below 0.007 mM and above 0.22 mM FA, while both stem cell viability (< 0.097 mM, > 1.52 mM) and neural differentiation (< 0.181 mM, > 1.35 mM) were affected when changing MET concentrations. A 10-day exposure to 13 nM MTX inhibited neural differentiation, especially in FA- and MET-deficient conditions. However, a 24-hour exposure to 39 nM MTX decreased neural cell and neural crest cell differentiation markers only when the concentration of FA in the medium was three times the standard concentration, which was expected to have a protective effect against MTX. These results show the importance of nutrient concentrations, exposure scenarios and timing of read-outs for cell differentiation and compound sensitivity in the ESTn. Caution should be taken when interpreting results from a single in vitro test, especially when extrapolating to effects on complex morphogenetic processes, like neural tube development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自动化微流体装置是实现定点护理自体细胞治疗的有希望的途径。诱导多能干细胞(iPSC)衍生的初始步骤涉及转染和长期细胞培养。这些步骤的整合将有助于降低微尺度设备在细胞重编程或基因校正中的应用的成本和占地面积。转染整合的当前实例集中于最大化效率而不是可行的长期培养。在这里,我们通过将自动转染与设计用于均质培养条件的灌注微流体装置集成来寻找整个过程的兼容性。使用荧光素对注射过程进行表征,以建立基于LabVIEW的例程,以实现用户定义的自动化。通过将GFP质粒化学转染到小鼠胚胎干细胞(mESC)中来证明概念证明。在设备中转染的细胞显示效率提高(34%,n=3)与标准协议(17.2%,n=3)。这代表了朝向用于细胞重编程或基因治疗的微流体处理系统的第一步。
    Automated microfluidic devices are a promising route towards a point-of-care autologous cell therapy. The initial steps of induced pluripotent stem cell (iPSC) derivation involve transfection and long term cell culture. Integration of these steps would help reduce the cost and footprint of micro-scale devices with applications in cell reprogramming or gene correction. Current examples of transfection integration focus on maximising efficiency rather than viable long-term culture. Here we look for whole process compatibility by integrating automated transfection with a perfused microfluidic device designed for homogeneous culture conditions. The injection process was characterised using fluorescein to establish a LabVIEW-based routine for user-defined automation. Proof-of-concept is demonstrated by chemically transfecting a GFP plasmid into mouse embryonic stem cells (mESCs). Cells transfected in the device showed an improvement in efficiency (34%, n = 3) compared with standard protocols (17.2%, n = 3). This represents a first step towards microfluidic processing systems for cell reprogramming or gene therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    从受影响的胚泡或从患者来源的体细胞产生的人多能干细胞(PSC)是用于疾病建模和药物发现的新兴平台。脆性X综合征(FXS),遗传性智力残疾的主要原因,是在胚胎干细胞和诱导的PCSs中建模的首批疾病之一,并且可以作为在人类疾病研究中利用人类PSC的示例性病例。在过去的十年里,FXS-PSC已用于解决关于FXS的病理生理学的基本问题。在这篇综述中,我们总结了FXS-PSC的生成方法,讨论它们与现有建模系统相比的优缺点,并描述它们在FXS发病机制研究和靶向治疗开发中的应用。
    Human pluripotent stem cells (PSCs) generated from affected blastocysts or from patient-derived somatic cells are an emerging platform for disease modeling and drug discovery. Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, was one of the first disorders modeled in both embryonic stem cells and induced PCSs and can serve as an exemplary case for the utilization of human PSCs in the study of human diseases. Over the past decade, FXS-PSCs have been used to address the fundamental questions regarding the pathophysiology of FXS. In this review we summarize the methodologies for generation of FXS-PSCs, discuss their advantages and disadvantages compared with existing modeling systems and describe their utilization in the study of FXS pathogenesis and in the development of targeted treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    BACKGROUND: Crohn\'s disease is a chronic inflammatory disease of the intestines, mainly the colon and ileum, related with ulcers and fistulae. It is estimated to affect 565,000 people in the United States. Currently available therapies, such as antibiotics, thiopurines, and anti-tumor necrosis factor-alpha agents, are only observed to reduce the complications associated with Crohn\'s disease and to improve quality of life, but cannot cure the disease. Stem cell therapy appears to have certain advantages over conventional therapies. Our study aimed to evaluate the efficacy of human embryonic stem cell therapy in a patient with Crohn\'s disease.
    METHODS: A 21-year-old male with chief complaints of intolerance to specific foods, abdominal pain, and diarrhea underwent human embryonic stem cell therapy for two months. After undergoing human embryonic stem cell therapy, the patient showed symptomatic relief. He had no complaints of back pain, abdominal pain, or diarrhea and had improved digestion. The patient had no signs and symptoms of skin infection, and had improved limb stamina, strength, and endurance. The condition of patient was stable after the therapy.
    CONCLUSIONS: Human embryonic stem cell therapy might serve as a new optimistic treatment approach for Crohn\'s disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • DOI:
    文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    OBJECTIVE: Comparative studies suggest that stem cells committed to a cardiac lineage are more effective for improving heart function than those featuring an extra-cardiac phenotype. We have therefore developed a population of human embryonic stem cell (ESC)-derived cardiac progenitor cells.
    RESULTS: Undifferentiated human ESCs (I6 line) were amplified and cardiac-committed by exposure to bone morphogenetic protein-2 and a fibroblast growth factor receptor inhibitor. Cells responding to these cardio-instructive cues express the cardiac transcription factor Isl-1 and the stage-specific embryonic antigen SSEA-1 which was then used to purify them by immunomagnetic sorting. The Isl-1(+) SSEA-1(+) cells were then embedded into a fibrin scaffold which was surgically delivered onto the infarct area in a 68-year-old patient suffering from severe heart failure [New York Heart Association [NYHA] functional Class III; left ventricular ejection fraction (LVEF): 26%]. A coronary artery bypass was performed concomitantly in a non-infarcted area. The implanted cells featured a high degree of purity (99% were SSEA-1(+)), had lost the expression of Sox-2 and Nanog, taken as markers for pluripotency, and strongly expressed Isl-1. The intraoperative delivery of the patch was expeditious. The post-operative course was uncomplicated either. After 3 months, the patient is symptomatically improved (NYHA functional Class I; LVEF: 36%) and a new-onset contractility is echocardiographically evident in the previously akinetic cell/patch-treated, non-revascularized area. There have been no complications such as arrhythmias, tumour formation, or immunosuppression-related adverse events.
    CONCLUSIONS: This observation demonstrates the feasibility of generating a clinical-grade population of human ESC-derived cardiac progenitors and combining it within a tissue-engineered construct. While any conclusion pertaining to efficacy would be meaningless, the patient\'s functional outcome yet provides an encouraging hint. Beyond this case, the platform that has been set could be useful for generating different ESC-derived lineage-specific progenies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BACKGROUND: Dynamic activation and inactivation of gene regulatory DNA produce the expression changes that drive the differentiation of cellular lineages. Identifying regulatory regions active during developmental transitions is necessary to understand how the genome specifies complex developmental programs and how these processes are disrupted in disease. Gene regulatory dynamics are mediated by many factors, including the binding of transcription factors (TFs) and the methylation and acetylation of DNA and histones. Genome-wide maps of TF binding and DNA and histone modifications have been generated for many cellular contexts; however, given the diversity and complexity of animal development, these data cover only a small fraction of the cellular and developmental contexts of interest. Thus, there is a need for methods that use existing epigenetic and functional genomics data to analyze the thousands of contexts that remain uncharacterized.
    RESULTS: To investigate the utility of histone modification data in the analysis of cellular contexts without such data, I evaluated how well genome-wide H3K27ac and H3K4me1 data collected in different developmental stages, tissues, and species were able to predict experimentally validated heart enhancers active at embryonic day 11.5 (E11.5) in mouse. Using a machine-learning approach to integrate the data from different contexts, I found that E11.5 heart enhancers can often be predicted accurately from data from other contexts, and I quantified the contribution of each data source to the predictions. The utility of each dataset correlated with nearness in developmental time and tissue to the target context: data from late developmental stages and adult heart tissues were most informative for predicting E11.5 enhancers, while marks from stem cells and early developmental stages were less informative. Predictions based on data collected in non-heart tissues and in human hearts were better than random, but worse than using data from mouse hearts.
    CONCLUSIONS: The ability of these algorithms to accurately predict developmental enhancers based on data from related, but distinct, cellular contexts suggests that combining computational models with epigenetic data sampled from relevant contexts may be sufficient to enable functional characterization of many cellular contexts of interest.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Pluripotent-specific inhibitors (PluriSIns) make a powerful tool to study the mechanisms controlling the survival of human pluripotent stem cells (hPSCs). Here, we characterize the mechanism of action of PluriSIn#2, a compound that selectively eliminates undifferentiated hPSCs, while sparing various other cell types derived from them. Toxicogenomic analysis predicts this compound to be a topoisomerase inhibitor. Gene expression analyses reveal that one of the human topoisomerase enzymes, topoisomerase II alpha (TOP2A), is uniquely expressed in hPSCs: TOP2A is highly expressed in undifferentiated cells, is downregulated during their differentiation, and its expression depends on the expression of core pluripotency transcription factors. Furthermore, siRNA-based knockdown of TOP2A in undifferentiated hPSCs results in their cell death, revealing that TOP2A expression is required for the survival of these cells. We find that PluriSIn#2 does not directly inhibit TOP2A enzymatic activity, but rather selectively represses its transcription, thereby significantly reducing TOP2A protein levels. As undifferentiated hPSCs require TOP2A activity for their survival, TOP2A inhibition by PluriSIn#2 thus causes their cell death. Therefore, TOP2A dependency can be harnessed for the selective elimination of tumorigenic hPSCs from culture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号