dendritic spines

树枝状棘
  • 文章类型: Journal Article
    伏隔核(NAc)中树突棘的结构可塑性对于从厌恶的经验中学习至关重要。NMDA受体(NMDARs)的激活刺激Ca2依赖性信号,导致肌动蛋白细胞骨架的变化,由GTPases的Rho家族介导,导致学习必不可少的突触后重塑。我们研究了NMDAR激活下游的磷酸化事件如何驱动造成厌恶学习的突触形态变化。小鼠纹状体/伏隔切片中蛋白激酶靶标的大规模磷酸化蛋白质组学分析显示,NMDAR激活导致194种蛋白质的磷酸化,包括RhoA调节剂,如ARHGEF2和ARHGAP21。Ca2依赖性蛋白激酶CaMKII对ARHGEF2的磷酸化增强了其RhoGEF活性,从而激活RhoA及其下游效应子Rho相关激酶(ROCK/Rho激酶)。进一步的磷酸化蛋白质组分析确定了221个ROCK靶标,包括突触后支架蛋白SHANK3,这对其与NMDAR和其他突触后支架蛋白的相互作用至关重要。NAc中SHANK3的ROCK介导的磷酸化对于脊柱生长和厌恶学习至关重要。这些发现表明,NMDAR激活启动了对学习和记忆至关重要的磷酸化级联。
    Structural plasticity of dendritic spines in the nucleus accumbens (NAc) is crucial for learning from aversive experiences. Activation of NMDA receptors (NMDARs) stimulates Ca2+-dependent signaling that leads to changes in the actin cytoskeleton, mediated by the Rho family of GTPases, resulting in postsynaptic remodeling essential for learning. We investigated how phosphorylation events downstream of NMDAR activation drive the changes in synaptic morphology that underlie aversive learning. Large-scale phosphoproteomic analyses of protein kinase targets in mouse striatal/accumbal slices revealed that NMDAR activation resulted in the phosphorylation of 194 proteins, including RhoA regulators such as ARHGEF2 and ARHGAP21. Phosphorylation of ARHGEF2 by the Ca2+-dependent protein kinase CaMKII enhanced its RhoGEF activity, thereby activating RhoA and its downstream effector Rho-associated kinase (ROCK/Rho-kinase). Further phosphoproteomic analysis identified 221 ROCK targets, including the postsynaptic scaffolding protein SHANK3, which is crucial for its interaction with NMDARs and other postsynaptic scaffolding proteins. ROCK-mediated phosphorylation of SHANK3 in the NAc was essential for spine growth and aversive learning. These findings demonstrate that NMDAR activation initiates a phosphorylation cascade crucial for learning and memory.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    可卡因使用障碍(CUD)是一种慢性神经精神障碍,估计影响1-3%的人口。活动依赖性神经保护蛋白(ADNP)对大脑发育和功能至关重要。显示对胎儿酒精综合征有保护作用,并调节成年小鼠的酒精消耗。这项研究的目的是描述ADNP的作用,及其活性肽NAP(NAPVSIPQ),这也被称为davunetide(研究药物)在介导可卡因诱导的神经适应。使用实时PCR检测伏隔核(NAc)中的Adnp和Adnp2水平,腹侧被盖区(VTA),和可卡因处理的小鼠的背侧海马(DH)(15mg/kg)。用兴奋性神经元膜表达绿色荧光蛋白(GFP)进一步标记Adnp杂合(Adnp+/-)和野生型(Adnp+/-)小鼠,其允许体内突触定量。用可卡因(5次注射;15mg/kg每隔一天一次)治疗小鼠,每天注射或不注射NAP(0.4μg/0.1ml),并在最后一次治疗后处死。我们使用Imarisx64.8.1.2(OxfordInstruments)软件分析了3D共聚焦图像中的海马CA1锥体细胞,以测量树突状脊柱密度和形态的变化。如前所述进行计算机模拟ADNP/NAP/可卡因结构建模。可卡因在注射雄性小鼠NAc和VTA后2h降低了Adnp和Adnp2的表达,mRNA水平在24小时后恢复到基线水平。可卡因进一步降低海马脊柱密度,特别是突触较弱的未成熟的细长和短刺,在雄性Adnp+/+)小鼠中,同时在Adnp+/-)雄性小鼠中增加突触上更强的成熟(蘑菇)棘,而在雌性小鼠中增加细长而短的棘。最后,我们发现可卡因在与氯胺酮相同的锌指结构域上与ADNP相互作用,并与NAP-锌指相互作用位点相邻.我们的结果暗示ADNP与可卡因滥用有关,进一步将ADNP基因作为神经精神疾病的关键调节因子。氯胺酮/可卡因和NAP治疗在某种程度上可以互换,暗示与ADNP上相邻锌指基序的相互作用,并暗示潜在的性别依赖性,CUD的非成瘾性NAP治疗。
    Cocaine use disorder (CUD) is a chronic neuropsychiatric disorder estimated to effect 1-3% of the population. Activity-dependent neuroprotective protein (ADNP) is essential for brain development and functioning, shown to be protective in fetal alcohol syndrome and to regulate alcohol consumption in adult mice. The goal of this study was to characterize the role of ADNP, and its active peptide NAP (NAPVSIPQ), which is also known as davunetide (investigational drug) in mediating cocaine-induced neuroadaptations. Real time PCR was used to test levels of Adnp and Adnp2 in the nucleus accumbens (NAc), ventral tegmental area (VTA), and dorsal hippocampus (DH) of cocaine-treated mice (15 mg/kg). Adnp heterozygous (Adnp +/-)and wild-type (Adnp +/-) mice were further tagged with excitatory neuronal membrane-expressing green fluorescent protein (GFP) that allowed for in vivo synaptic quantification. The mice were treated with cocaine (5 injections; 15 mg/kg once every other day) with or without NAP daily injections (0.4 µg/0.1 ml) and sacrificed following the last treatment. We analyzed hippocampal CA1 pyramidal cells from 3D confocal images using the Imaris x64.8.1.2 (Oxford Instruments) software to measure changes in dendritic spine density and morphology. In silico ADNP/NAP/cocaine structural modeling was performed as before. Cocaine decreased Adnp and Adnp2 expression 2 h after injection in the NAc and VTA of male mice, with mRNA levels returning to baseline levels after 24 h. Cocaine further reduced hippocampal spine density, particularly synaptically weaker immature thin and stubby spines, in male Adnp+/+) mice while increasing synaptically stronger mature (mushroom) spines in Adnp+/-) male mice and thin and stubby spines in females. Lastly, we showed that cocaine interacts with ADNP on a zinc finger domain identical to ketamine and adjacent to a NAP-zinc finger interaction site. Our results implicate ADNP in cocaine abuse, further placing the ADNP gene as a key regulator in neuropsychiatric disorders. Ketamine/cocaine and NAP treatment may be interchangeable to some degree, implicating an interaction with adjacent zinc finger motifs on ADNP and suggestive of a potential sex-dependent, non-addictive NAP treatment for CUD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:神经炎症和小胶质细胞活化相关的树突状损伤与孤独症谱系障碍(ASD)的发病机制有关。以往的研究表明,前颗粒蛋白(PGRN)是一种与炎症和突触发育相关的生长因子,但PGRN在自闭症中的作用以及PGRN表达变化的潜在机制仍不清楚.
    目的:研究PGRN对自闭症的影响,我们将重组PGRN立体定向注射到ASD模型大鼠的海马中。此外,我们探讨了sortilin可能是通过利用SORT1敲低PGRN改变背后的因素的可能性。最终,我们的目标是确定治疗自闭症的潜在目标。
    结果:PGRN可以减轻炎症反应,保护神经元树突棘,改善类似自闭症的行为。同时,在ASD患者和大鼠中均观察到sortilin的表达升高和PGRN的水平降低。增强的分拣素水平促进PGRN内化到溶酶体中。值得注意的是,抑制SORT1表达扩增PGRN水平,小胶质细胞活化减少,减轻炎症,从而减轻自闭症样行为。
    结论:总的来说,我们的发现强调了ASD大鼠大脑中sortilin水平的升高,通过影响PGRN表达加剧树突损伤。PGRN补充和SORT1敲除具有作为ASD治疗策略的潜力。
    BACKGROUND: Neuroinflammation and microglial activation-related dendritic injury contribute to the pathogenesis of Autism Spectrum Disorder (ASD). Previous studies show that Progranulin (PGRN) is a growth factor associated with inflammation and synaptic development, but the role of PGRN in autism and the mechanisms underlying changes in PGRN expression remain unclear.
    OBJECTIVE: To investigate the impact of PGRN in autism, we stereotactically injected recombinant PGRN into the hippocampus of ASD model rats. Additionally, we explored the possibility that sortilin may be the factor behind the alterations in PGRN by utilizing SORT1 knockdown. Ultimately, we aimed to identify potential targets for the treatment of autism.
    RESULTS: PGRN could alleviate inflammatory responses, protect neuronal dendritic spines, and ameliorate autism-like behaviors. Meanwhile, elevated expression of sortilin and decreased levels of PGRN were observed in both ASD patients and rats. Enhanced sortilin levels facilitated PGRN internalization into lysosomes. Notably, suppressing SORT1 expression amplified PGRN levels, lessened microglial activation, and mitigated inflammation, thereby alleviating autism-like behaviors.
    CONCLUSIONS: Collectively, our findings highlight elevated sortilin levels in ASD rat brains, exacerbating dendrite impairment by affecting PGRN expression. PGRN supplementation and SORT1 knockdown hold potential as therapeutic strategies for ASD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经元在它们的树枝状骨上接受成千上万的输入,单个突触经历活动依赖性可塑性。突触后强度的持久变化与脊柱头部体积的变化相关。这种结构可塑性的大小和方向-增强(sLTP)和抑制(sLTD)-取决于受激突触的数量和空间分布。然而,神经元如何分配资源以实现相邻突触之间跨空间和时间的突触强度变化仍不清楚。在这里,我们结合了实验和建模方法来探索多脊柱可塑性的基本过程。我们使用谷氨酸解链在共享相同树突分支的不同数量的突触上诱导sLTP,我们建立了一个模型,该模型包含诱导脊柱生长或收缩的双重作用Ca2依赖性成分。我们的结果表明,脊柱之间对分子资源的竞争是多脊柱可塑性的关键驱动因素,同时刺激的脊柱之间的空间距离会影响由此产生的脊柱动力学。
    Neurons receive thousands of inputs onto their dendritic arbour, where individual synapses undergo activity-dependent plasticity. Long-lasting changes in postsynaptic strengths correlate with changes in spine head volume. The magnitude and direction of such structural plasticity - potentiation (sLTP) and depression (sLTD) - depend upon the number and spatial distribution of stimulated synapses. However, how neurons allocate resources to implement synaptic strength changes across space and time amongst neighbouring synapses remains unclear. Here we combined experimental and modelling approaches to explore the elementary processes underlying multi-spine plasticity. We used glutamate uncaging to induce sLTP at varying number of synapses sharing the same dendritic branch, and we built a model incorporating a dual role Ca2+-dependent component that induces spine growth or shrinkage. Our results suggest that competition among spines for molecular resources is a key driver of multi-spine plasticity and that spatial distance between simultaneously stimulated spines impacts the resulting spine dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    无线通信设备的广泛使用已经需要不可避免地暴露于射频电磁场(RF-EMF)。特别是,儿童RF-EMF暴露的增加主要是由手机使用驱动的。因此,这项研究调查了在出生后第28天以4.0W/kg的比吸收率暴露于1850MHzRF-EMF对小鼠皮质神经元的影响。结果表明,每日暴露4周后,前额叶皮层中蘑菇形树突棘的数量显着减少。此外,延长RF-EMF暴露超过9天导致突触后密度95点逐渐降低,并抑制发育中的皮质神经元的神经突生长。此外,与突触形成相关的基因的表达水平,如突触细胞粘附分子和细胞周期蛋白依赖性激酶5,在RF-EMF暴露小鼠的大脑皮层中减少。使用Morris水迷宫进行的行为评估显示,在4周的暴露期后,空间学习和记忆发生了变化。这些发现强调了儿童期RF-EMF暴露破坏大脑皮层突触功能的潜力,从而影响神经系统的发育阶段,并可能影响后期的认知功能。
    The widespread use of wireless communication devices has necessitated unavoidable exposure to radiofrequency electromagnetic fields (RF-EMF). In particular, increasing RF-EMF exposure among children is primarily driven by mobile phone use. Therefore, this study investigated the effects of 1850 MHz RF-EMF exposure at a specific absorption rate of 4.0 W/kg on cortical neurons in mice at postnatal day 28. The results indicated a significant reduction in the number of mushroom-shaped dendritic spines in the prefrontal cortex after daily exposure for 4 weeks. Additionally, prolonged RF-EMF exposure over 9 days led to a gradual decrease in postsynaptic density 95 puncta and inhibited neurite outgrowth in developing cortical neurons. Moreover, the expression levels of genes associated with synapse formation, such as synaptic cell adhesion molecules and cyclin-dependent kinase 5, were reduced in the cerebral cortexes of RF-EMF-exposed mice. Behavioral assessments using the Morris water maze revealed altered spatial learning and memory after the 4-week exposure period. These findings underscore the potential of RF-EMF exposure during childhood to disrupt synaptic function in the cerebral cortex, thereby affecting the developmental stages of the nervous system and potentially influencing later cognitive function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对于被称为标志跟踪器的一个子集,与奖励刺激相关的离散巴甫洛夫线索可以获得激励特性并对行为施加控制。因为对线索的反应是各种神经精神疾病的特征,迹象追踪的啮齿动物模型可能对探索精神病性个体变异的神经生物学有用。越来越多的证据表明,伏隔核(NAc)中的多巴胺能神经传递参与了体征追踪的发展,然而,这种表型是否与特定的伏隔突触后特性相关尚不清楚。这里,我们检查了树突状脊柱的结构组织,以及突触前和突触后活动标记,在Pavlovian条件接近程序后,雄性和雌性大鼠的NAc核心中。与我们的预测相反,提示重新暴露会增加脊柱密度,在没有奖励传递的情况下,经历离散的杠杆提示会导致脊柱密度低于对照组大鼠,因为对照组大鼠在训练期间杠杆与奖励不配对;这种效果在最强大的体征跟踪器中得到了缓解。有趣的是,这种相同的行为测试(杠杆演示没有奖励)导致增加水平的标记的突触前活动(突触素),这种影响在雌性大鼠中最大。虽然在最初的巴甫洛夫训练中观察到女性的一些行为差异,最终条件评分与男性没有差异,并且不受发情周期的影响。这项工作为调理如何影响NAc核心的神经元可塑性提供了新的见解,同时强调研究雄性和雌性大鼠行为和神经生物学的重要性。
    For a subset of individuals known as sign-trackers, discrete Pavlovian cues associated with rewarding stimuli can acquire incentive properties and exert control over behaviour. Because responsiveness to cues is a feature of various neuropsychiatric conditions, rodent models of sign-tracking may prove useful for exploring the neurobiology of individual variation in psychiatric vulnerabilities. Converging evidence points towards the involvement of dopaminergic neurotransmission in the nucleus accumbens core (NAc) in the development of sign-tracking, yet whether this phenotype is associated with specific accumbal postsynaptic properties is unknown. Here, we examined dendritic spine structural organisation, as well as presynaptic and postsynaptic markers of activity, in the NAc core of male and female rats following a Pavlovian-conditioned approach procedure. In contrast to our prediction that cue re-exposure would increase spine density, experiencing the discrete lever-cue without reward delivery resulted in lower spine density than control rats for which the lever was unpaired with reward during training; this effect was tempered in the most robust sign-trackers. Interestingly, this same behavioural test (lever presentation without reward) resulted in increased levels of a marker of presynaptic activity (synaptophysin), and this effect was greatest in female rats. Whilst some behavioural differences were observed in females during initial Pavlovian training, final conditioning scores did not differ from males and were unaffected by the oestrous cycle. This work provides novel insights into how conditioning impacts the neuronal plasticity of the NAc core, whilst highlighting the importance of studying the behaviour and neurobiology of both male and female rats.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:自杀是一种由复杂的环境和遗传风险导致的死亡方式,影响全球数百万人。结构和功能研究都将海马体确定为导致自杀风险的脆弱大脑区域之一。
    方法:我们已经确定了海马组织转录组,基因本体论,细胞类型比例,对照组(n=28)和自杀死者(n=22)的树突脊柱形态。此外,在对照组(n=2)和自杀死者(n=2)中,我们还研究了iPSC来源的神经元前体细胞(NPCs)和神经元的转录组特征.
    结果:海马组织转录组数据显示NPAS4基因表达下调,而ALDH1A2、NAAA、MLXIPL基因在自杀死者海马组织中表达上调。基因本体论确定了29条重要途径,包括NPAS4相关基因本体论术语“兴奋性突触后电位”,“突触后膜电位的调节”和“长期记忆”表明自杀死者海马中谷氨酸能突触的改变。细胞类型去卷积确定了兴奋性神经元比例降低和抑制性神经元比例增加,这提供了自杀死者海马中兴奋/抑制失衡的证据。此外,自杀死者增加了海马的树枝状脊柱密度,由于细(相对不稳定)树突棘的增加,与对照组相比。iPSC来源的海马样NPCs和神经元的转录组揭示了NPC和神经元中31和33个差异表达基因,分别,自杀死者。
    结论:我们的发现将为自杀的海马神经病理学提供新的见解。
    BACKGROUND: Suicide is a manner of death resulting from complex environmental and genetic risks that affect millions of people globally. Both structural and functional studies identified the hippocampus as one of the vulnerable brain regions contributing to suicide risk.
    METHODS: We have identified the hippocampal tissue transcriptomes, gene ontology, cell type proportions, and dendritic spine morphology in controls (n = 28) and suicide decedents (n = 22). In addition, the transcriptomic signature in iPSC-derived neuronal precursor cells (NPCs) and neurons were also investigated in controls (n = 2) and suicide decedents (n = 2).
    RESULTS: The hippocampal tissue transcriptomic data revealed that NPAS4 gene expression was downregulated while ALDH1A2, NAAA, and MLXIPL gene expressions were upregulated in hippocampal tissue of suicide decedents. The gene ontology identified 29 significant pathways including NPAS4-associated gene ontology terms \"excitatory post-synaptic potential\", \"regulation of postsynaptic membrane potential\" and \"long-term memory\" indicating alteration of glutamatergic synapses in the hippocampus of suicide decedents. The cell type deconvolution identified decreased excitatory neuron proportion and an increased inhibitory neuron proportion providing evidence of excitation/inhibition imbalance in the hippocampus of suicide decedents. In addition, suicide decedents had increased dendric spine density in the hippocampus, due to an increase of thin (relatively unstable) dendritic spines, compared to controls. The transcriptomes of iPSC-derived hippocampal-like NPCs and neurons revealed 31 and 33 differentially expressed genes in NPC and neurons, respectively, of suicide decedents.
    CONCLUSIONS: Our findings will provide new insights into the hippocampal neuropathology of suicide.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    强迫症(OCD)是一种以强迫性行为为特征的精神疾病,通常表现为侵入性思想和重复性行为。喹吡罗模型已与大鼠一起用于复制强迫行为并研究与该病理相关的神经生理过程。内侧前额叶皮质(mPFC)和背外侧纹状体(DLS)的树突棘的一些变化与强迫行为的发生有关。树突棘调节兴奋性突触接触,它们的形态与各种脑部病理有关。本研究旨在将强迫行为的发生(通过施用药物喹吡罗产生)与mPFC和DLS中不同类型的树突棘的形态相关联。使用总共18只雄性大鼠。一半被分配到实验组,另一半到对照组。前者接受了喹吡罗的注射,而后者大鼠注射生理盐水溶液,10天,在这两种情况下。经过实验处理,quinpirole大鼠表现出所有指示强迫行为的参数,并且与mPFC和DLS中的粗短和宽无颈棘的密度显着相关。mPFC和DLS神经元的树突状棘均显示出与喹吡罗诱导的强迫行为表达相关的可塑性chnges。建议进一步研究评估谷氨酸能神经传递在OCD神经生物学中的参与。
    Obsessive-compulsive disorder (OCD) is a mental affliction characterized by compulsive behaviors often manifested in intrusive thoughts and repetitive actions. The quinpirole model has been used with rats to replicate compulsive behaviors and study the neurophysiological processes associated with this pathology. Several changes in the dendritic spines of the medial prefrontal cortex (mPFC) and dorsolateral striatum (DLS) have been related to the occurrence of compulsive behaviors. Dendritic spines regulate excitatory synaptic contacts, and their morphology is associated with various brain pathologies. The present study was designed to correlate the occurrence of compulsive behaviors (generated by administering the drug quinpirole) with the morphology of the different types of dendritic spines in the mPFC and DLS. A total of 18 male rats were used. Half were assigned to the experimental group, the other half to the control group. The former received injections of quinpirole, while the latter rats were injected with physiological saline solution, for 10 days in both cases. After the experimental treatment, the quinpirole rats exhibited all the parameters indicative of compulsive behavior and a significant correlation with the density of stubby and wide neckless spines in both the mPFC and DLS. Dendritic spines from both mPFC and DLS neurons showed plastic changes correlatively with the expression of compulsive behavior induced by quinpirole. Further studies are suggested to evaluate the involvement of glutamatergic neurotransmission in the neurobiology of OCD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    学习和记忆需要位于树突棘上的神经元谷氨酸能突触的协调结构和功能可塑性。这里,我们研究了内质网(ER)如何控制突触后Ca2信号和树突状脊柱大小的长期增强,即,伴随谷氨酸能突触传递功能增强的sLTP。在大多数含ER(ER+)的棘突中,高频光学谷氨酸解套(HFGU)诱导长期持续的sLTP,伴随着由N-甲基-D-天冬氨酸受体(NMDARs)参与的信号级联下游的脊柱ER含量持续增加,L型Ca2+通道(LTCC),和Orai1频道,后者响应于ERCa2释放而被基质相互作用分子1(STIM1)激活。相比之下,HFGU刺激缺乏ER(ER-)的棘仅表达瞬时sLTP,并表现出较弱的Ca2信号,明显缺乏Orai1和ER的贡献。与脊柱内质网调节结构可塑性一致,向ER提供第二种刺激-棘诱导的ER募集以及持续的sLTP,而ER+棘对序贯刺激没有显示大小或ER含量的额外增加。令人惊讶的是,ERCa2+释放诱导的STIM1和Orai1之间的物理相互作用,但不是由此产生的Ca2+通过Orai1通道进入,证明对于持续表达晚期sLTP所需的脊柱大小和ER含量的持续增加是必要的。
    Learning and memory require coordinated structural and functional plasticity at neuronal glutamatergic synapses located on dendritic spines. Here, we investigated how the endoplasmic reticulum (ER) controls postsynaptic Ca2+ signaling and long-term potentiation of dendritic spine size, i.e., sLTP that accompanies functional strengthening of glutamatergic synaptic transmission. In most ER-containing (ER+) spines, high-frequency optical glutamate uncaging (HFGU) induced long-lasting sLTP that was accompanied by a persistent increase in spine ER content downstream of a signaling cascade engaged by N-methyl-D-aspartate receptors (NMDARs), L-type Ca2+ channels (LTCCs), and Orai1 channels, the latter being activated by stromal interaction molecule 1 (STIM1) in response to ER Ca2+ release. In contrast, HFGU stimulation of ER-lacking (ER-) spines expressed only transient sLTP and exhibited weaker Ca2+ signals noticeably lacking Orai1 and ER contributions. Consistent with spine ER regulating structural metaplasticity, delivery of a second stimulus to ER- spines induced ER recruitment along with persistent sLTP, whereas ER+ spines showed no additional increases in size or ER content in response to sequential stimulation. Surprisingly, the physical interaction between STIM1 and Orai1 induced by ER Ca2+ release, but not the resulting Ca2+ entry through Orai1 channels, proved necessary for the persistent increases in both spine size and ER content required for expression of long-lasting late sLTP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    树突状棘作为突触后位点,从突触前轴突接收兴奋信号。棘的突触可塑性是神经元回路细化的基础。神经认知障碍通常与树突棘的损伤和消除有关。在这项研究中,我们报告了一种全光学方法,通过飞秒激光刺激的短暂闪光来激活树突状脊柱的生长和再生。通过激活细胞外信号调节激酶(ERK)信号通路,可以通过在体细胞的微米区域内对激光进行瞬时照射来挽救棘的发育和损失。获救的神经元表现出功能。因此,我们为树突棘的再生提供了一种潜在的非侵入性方法。
    Dendritic spines function as postsynaptic sites, receiving excitatory signals from presynaptic axons. The synaptic plasticity of spines underlies the refinement of neuronal circuits. Neural cognitive disorders are commonly associated with the impairment and elimination of dendritic spines. In this study, we report an all-optical method to activate dendritic spine growth and regeneration by a single short flash of femtosecond laser stimulation. The inhibited development and loss of spines can be rescued by a transient illumination of the laser inside a micrometer region of the soma by activating the extracellular signal-regulated kinase (ERK) signaling pathway. The rescued neurons exhibit function. Hence we provide a potential noninvasive method for the regeneration of dendritic spines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号