computational prediction

计算预测
  • 文章类型: Journal Article
    RNA是许多细胞过程中的关键角色,如信号转导,复制,运输,细胞分裂,转录,和翻译。这些不同的功能是通过RNA与蛋白质的相互作用来实现的。然而,与蛋白质-蛋白质和蛋白质-DNA相互作用相比,蛋白质-RNA相互作用仍然很难理解。这种知识差距可以归因于蛋白质-RNA结构的有限可用性以及研究这些复合物的实验困难。计算资源的最新进展扩大了可用于在各种分子水平上研究蛋白质-RNA相互作用的工具的数量。这些包括用于预测来自一级序列的相互作用残基的工具,蛋白质-RNA复合物的建模,预测这些复合体中的热点,并洞悉它们相互作用的动力学。这些工具都有其优点和局限性,这使得为感兴趣的问题选择一个最佳的方法变得很重要。在这里,我们提出了一个计算工具的迷你综述,以研究蛋白质-RNA相互作用的不同方面,专注于整体应用,该领域的发展和未来的前景。
    RNA is the key player in many cellular processes such as signal transduction, replication, transport, cell division, transcription, and translation. These diverse functions are accomplished through interactions of RNA with proteins. However, protein-RNA interactions are still poorly derstood in contrast to protein-protein and protein-DNA interactions. This knowledge gap can be attributed to the limited availability of protein-RNA structures along with the experimental difficulties in studying these complexes. Recent progress in computational resources has expanded the number of tools available for studying protein-RNA interactions at various molecular levels. These include tools for predicting interacting residues from primary sequences, modelling of protein-RNA complexes, predicting hotspots in these complexes and insights into derstanding in the dynamics of their interactions. Each of these tools has its strengths and limitations, which makes it significant to select an optimal approach for the question of interest. Here we present a mini review of computational tools to study different aspects of protein-RNA interactions, with focus on overall application, development of the field and the future perspectives.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物网络的特点是在时间和空间上有不同的相互作用和动力学。许多调节模块并行操作并且彼此互连。一些途径在功能上是已知的,并相应地进行了注释,例如,内吞作用,迁移,或细胞骨架重排。然而,许多相互作用没有很好地表征。为了重建细胞网络中的生物复杂性,我们将现有的实验证实和分析的相互作用与蛋白质相互作用推断框架结合起来,使用实验证实的来自其他生物体的相互作用作为基础。预测评分包括序列相似性,相互作用的进化守恒,同一途径中相互作用的共存,正交学以及结构相似性,以对推断的相互作用进行排序和比较。我们通过研究用烟曲霉(分生孢子,分生孢子,机载,无性孢子)。甚至可以通过直接实验证实九个预测的关键宿主-病原体相互作用中的三个。此外,我们建议使用操纵宿主-病原体相互作用的药物。
    Biological networks are characterized by diverse interactions and dynamics in time and space. Many regulatory modules operate in parallel and are interconnected with each other. Some pathways are functionally known and annotated accordingly, e.g., endocytosis, migration, or cytoskeletal rearrangement. However, many interactions are not so well characterized. For reconstructing the biological complexity in cellular networks, we combine here existing experimentally confirmed and analyzed interactions with a protein-interaction inference framework using as basis experimentally confirmed interactions from other organisms. Prediction scoring includes sequence similarity, evolutionary conservation of interactions, the coexistence of interactions in the same pathway, orthology as well as structure similarity to rank and compare inferred interactions. We exemplify our inference method by studying host-pathogen interactions during infection of Mus musculus (phagolysosomes in alveolar macrophages) with Aspergillus fumigatus (conidia, airborne, asexual spores). Three of nine predicted critical host-pathogen interactions could even be confirmed by direct experiments. Moreover, we suggest drugs that manipulate the host-pathogen interaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鉴于他们在翻译中的核心作用,拼接,转录本的定位和稳定性,RNA结合蛋白(RBP)是几种细胞过程的关键调节因子。虽然已经进行了实验努力来研究RBPs如何与转录本结合,关于RNA对相互作用的贡献知之甚少。这里,我们回顾了最常见的以RNA为中心的方法来揭示与RBPs的相互作用:两者都是在体外(SELEX,SEQR,RNA竞争和RBNS)和计算机模拟(MEME,Seamot,GLAM2,iDeep,MEMERIS,RNA上下文,RCK,RNApromo和GraphProt)。我们强调了每种技术的主要优点和缺点,并强调了有助于鉴定RBP识别中涉及的RNA基序的关键物理化学特征。我们讨论了影响蛋白质-RNA结合的外在决定因素,例如转录后和翻译后修饰以及转录本的表达和位置。
    Given their central role in translation, splicing, localization and stability of transcripts, RNA binding proteins (RBPs) are key regulators of several cellular processes. While experimental efforts have been put to study how RBPs bind to transcripts, very little is known about the RNA contributions to the interaction. Here, we review the most common RNA-centric methods to reveal interactions with RBPs: both in vitro (SELEX, SEQR, RNA-compete and RBNS) and in silico (MEME, SeAMotE, GLAM2, iDeep, MEMERIS, RNA context, RCK, RNApromo and GraphProt). We emphasize the main advantages and disadvantages of each technique and highlight the key physico-chemical features contributing to the identification of RNA motifs involved in RBP recognition. We discuss extrinsic determinants influencing protein-RNA binding, such as post-transcriptional and post-translational modifications as well as expression and location of transcripts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号