cluster approach

  • 文章类型: Journal Article
    来自假单胞菌蛋白原的酰基转移酶(PpATase)在自然界中催化单乙酰间苯三酚向二乙酰间苯三酚和间苯三酚的可逆转化。有趣的是,该酶已被证明可以催化乙酸3-羟基苯酯向2'的混杂转化,4\'-二羟基苯乙酮,代表Fries重排的生物学版本。在本研究中,我们报告了使用量子化学计算对PpATase的这种活性进行的机理研究。提出了一种详细的机制,并给出了反应的能量分布。计算表明,酶的酰化是高度放热的,而转移回底物的乙酰基只是轻微放热。底物C6-H的去质子化是限速的,和远程天冬氨酸残基(Asp137)被建议作为该步骤中的一般碱基基团。对各种乙酰受体的结合能的分析表明,PpATase可以促进分子内和分子间Fries向多种化合物的重排。
    The acyltransferase from Pseudomonas protegens (PpATase) catalyzes in nature the reversible transformation of monoacetylphloroglucinol to diacetylphloroglucinol and phloroglucinol. Interestingly, this enzyme has been shown to catalyze the promiscuous transformation of 3-hydroxyphenyl acetate to 2\',4\'-dihydroxyacetophenone, representing a biological version of the Fries rearrangement. In the present study, we report a mechanistic investigation of this activity of PpATase using quantum chemical calculations. A detailed mechanism is proposed, and the energy profile for the reaction is presented. The calculations show that the acylation of the enzyme is highly exothermic, while the acetyl transfer back to the substrate is only slightly exothermic. The deprotonation of the C6-H of the substrate is rate-limiting, and a remote aspartate residue (Asp137) is proposed to be the general base group in this step. Analysis of the binding energies of various acetyl acceptors shows that PpATase can promote both intramolecular and intermolecular Fries rearrangement towards diverse compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    绿锈(GR)由于其高Fe(II)含量,是地下环境中还原重金属和有机污染物的潜在重要化合物,但是缺乏实际反应机理的许多细节。GR中的还原容量分布是了解氧化还原反应发生的方式和位置的关键,计算化学可以提供有关绿锈电子特性的更多详细信息。我们构建了三种大小的单层GR聚类模型(即,没有层间分子或离子),并使用密度泛函理论计算了这些结构的电荷分布。我们发现Fe(II)和Fe(III)在单层GR中分布不均匀。Fe(II)/Fe(III)比值在一定范围内,外部铁原子的行为更像Fe(III),内部铁原子的行为更像Fe(II)。这些发现表明,GR的内部比外部更具还原性,并将为理解GR的氧化还原相互作用提供新的信息。
    Green rust (GR) is a potentially important compound for the reduction of heavy metal and organic pollutants in subsurface environment because of its high Fe(II) content, but many details of the actual reaction mechanism are lacking. The reductive capacity distribution within GR is a key to understand how and where the redox reaction occurs and computational chemistry can provide more details about the electronic properties of green rust. We constructed three sizes of cluster models of single layer GR (i.e., without interlayer molecules or ions) and calculated the charge distribution of these structures using density functional theory. We found that the Fe(II) and Fe(III) are distributed unevenly in the single layer GR. Within a certain range of Fe(II)/Fe(III) ratios, the outer iron atoms behave more like Fe(III) and the inner iron atoms behave more like Fe(II). These findings indicate that the interior of GR is more reductive than the outer parts and will provide new information to understand the GR redox interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号