aniline

苯胺
  • 文章类型: Journal Article
    分子印迹聚合物(MIP)是通过分子印迹技术产生的聚合物,其留下用于与模板分子的特定相互作用的空腔,并且已经应用于分子选择性任务。在这项研究中,分子动力学(MD)模拟技术被用来证明苯胺低聚物可以作为检测和分离用于淋病治疗的壮观霉素药物分子的潜在MIP。对不同尺寸的苯胺低聚物中的壮观霉素系统进行了MD模拟。从MD模拟计算的均方位移(MSD)和扩散系数表明,当苯胺低聚物的长度大于2时,扩散系数显着下降。壮观霉素在苯胺三聚体中的扩散系数最低,对应于模板周围MIP的最高原子分布。然后,计算具有和不具有壮观霉素的MIP系统中的特定空腔以评估由模板产生的空腔的稳定性。在三聚体系统内产生的空腔的体积最接近壮观霉素体积,因此成为MIP进一步发展的最佳低聚物尺寸。
    Molecularly imprinted polymers (MIP) are the polymers created by molecular imprinting techniques that leave cavities for the specific interactions with a template molecule and have been applied in molecular selectivity tasks. In this study, the molecular dynamics (MD) simulation technique was used to demonstrate that aniline oligomer could be developed as a potential MIP for detection and separation of the spectinomycin drug molecule for gonorrhea treatment. MD simulations were performed for the systems of a spectinomycin within aniline oligomers of different sizes. The mean square displacement (MSD) and the diffusivity calculated from MD simulations showed that the diffusion coefficient was significantly dropped when the length of aniline oligomer was greater than two. The diffusion coefficient of spectinomycin became the lowest within aniline trimers, corresponded to the highest atomic distribution of MIP around the template. Then, the specific cavity in MIP systems with and without spectinomycin was calculated to assess the stability of the cavity created by the template. The volume of a cavity created within the trimer system was closest to the spectinomycin volume and therefore became the optimal oligomer size for further development of MIP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    We report the use of ion mobility mass spectrometry (IMMS) and energy-resolved collisional activation to investigate gas-phase reactions of protonated aniline and protonated phenol. Protonated aniline prototropic tautomerization and nucleophilic substitution (SN1) to produce phenol with traces of water in the IMMS cell are reported. Tautomerization of protonated phenol and its ability to form protonated aniline in presence of ammonia in the gas phase are also observed. These results are supported by energy landscapes obtained from computational chemistry. These structure modifications in the IMMS cell affected the measured collision cross section (CCS). A thorough understanding of the gas-phase reactions occurring in IMMS appears mandatory before using the experimental CCS as a robust descriptor which is stated by the recent literature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Predictive toxicity models rely on large amounts of accurate in vivo data. Here, we analyze the quality of in vivo data from the U.S. EPA Toxicity Reference Database (ToxRefDB), using chemical-induced anemia as an example. Considerations include variation in experimental conditions, changes in terminology over time, distinguishing negative from missing results, observer and diagnostic bias, and data transcription errors. Within ToxRefDB, we use hematological data on 658 chemicals tested in one or more of 1738 studies (subchronic rat or chronic rat, mouse, or dog). Anemia was reported most frequently in the rat subchronic studies, followed by chronic studies in dog, rat, and then mouse. Concordance between studies for a positive finding of anemia (same chemical, different laboratories) ranged from 90% (rat subchronic predicting rat chronic) to 40% (mouse chronic predicting rat chronic). Concordance increased with manual curation by 20% on average. We identified 49 chemicals that showed an anemia phenotype in at least two species. These included 14 aniline moiety-containing compounds that were further analyzed for their potential to be metabolically transformed into substituted anilines, which are known anemia-causing chemicals. This analysis should help inform future use of in vivo databases for model development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Slow electron velocity-map imaging (SEVI) of aniline has been investigated via two-color resonant-enhanced two-photo (1+1\') ionization (2C-R2PI) method. A number of vibrational frequencies in the first excited state of neutral (S1) and 2B1 ground electronic state of cation (D0) have been accurately determined. In addition, photoelectron angular distributions (PADs) in the two-step transitions are presented and reveal a near threshold shape resonance in the ionization of aniline. The SEVI spectra taken via various S1 intermediate states provide the detailed vibrational structures of D0 state and directly deduce the accurate adiabatic ionization potential (IP) of 62,271±6cm-1. Ab initio calculations excellently reproduce the experimental IP value (Theo. 62,242cm-1). For most vibrational modes, good agreement between theoretical and experimental frequencies in the S0 and D0 states of aniline is obtained to aid us to clearly assign vibrational modes. Especially, the vibrational frequencies calculated at the CASSCF level are much better consistent with experimental data than that obtained using the TDDFT and CIS methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Enzymatic syntheses of fatty acid anilides are important owing to their wide range of industrial applications in detergents, shampoo, cosmetics, and surfactant formulations. The amidation reaction of Mucor miehei lipase Lipozyme IM20 was investigated for direct amidation of triacylglycerol in organic solvents. The process parameters (reaction temperature, substrate molar ratio, enzyme amount) were optimized to achieve the highest yield of anilide. The maximum yield of palmitanilide (88.9%) was achieved after 24 h of reaction at 40 °C at an enzyme concentration of 1.4% (70 mg). Kinetics of lipase-catalyzed amidation of aniline with tripalmitin has been investigated. The reaction rate could be described in terms of the Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The kinetic constants were estimated by using non-linear regression method using enzyme kinetic modules. The enzyme operational stability study showed that Lipozyme IM20 retained 38.1% of the initial activity for the synthesis of palmitanilide (even after repeated use for 48 h). Palmitanilide, a fatty acid amide, exhibited potent antimicrobial activity toward Bacillus cereus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BACKGROUND: Present study was designed to evaluate the protective effects of ethanolic extract of Dioscorea alata L. (DA) on hematological and biochemical changes in aniline-induced spleen toxicity in rats.
    METHODS: Wistar rats of either sex (200-250g) were used in the study and each group contains six rats. Splenic toxicity was induced in rats by administration of aniline hydrochloride (AH; 100 ppm) in drinking water for a period of 30 days. Treatment groups received DA (50 and 100 mg/kg/day, po) along with AH. At the end of treatment period, various serum and tissue parameters were evaluated.
    RESULTS: Rats administered with AH (100 ppm) in drinking water for 30 days showed a significant alteration in general parameters (organ weight, body weight, water intake, feed consumption, and fecal matter content), hematological parameters (red blood cell (RBC), white blood cell (WBC), and hemoglobin content), and biochemical parameters (total iron content, lipid peroxidation, reduced glutathione (GSH), and nitric oxide (NO) content) of spleen. Treatment with DA (50 and 100 mg/kg/day, po) for 30 days along with AH showed significant recovery in aniline-induced splenic toxicity.
    CONCLUSIONS: The present result showed that involvement of oxidative and nitrosative stress in aniline-induced splenic toxicity and DA protects the rats from the toxicity, which might be due to its antioxidant property and the presence of different phytochemicals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号