Xenorhabdus

横纹肌
  • 文章类型: Journal Article
    用于治疗感染的抗生素的过度处方主要归咎于细菌耐药性的增加。问题还包括发现新型抗生素的速度缓慢,以及需要遵循的许多过程来对医疗使用安全的抗微生物剂进行分类。横纹肌。肠杆菌科,与Steinernema属的昆虫病原线虫相互关联,生产各种抗菌肽,包括细菌素,缩肽,异种抗生素和PAX(肽抗微生物-Xenorhabdus)肽,加上具有抗菌和抗真菌活性的其他次级代谢产物。一些菌株的次级代谢产物对原生动物具有活性,一些具有抗癌特性。因此,由单株Xenorhabdus物种入侵的线虫不被其他微生物感染就不足为奇了。在这次审查中,由Xenorhabdusspp产生的抗菌化合物。列出并讨论了这些次生代谢物合成中涉及的基因簇。我们还回顾了增加抗微生物化合物产量所需的生长条件。
    The over-prescription of antibiotics for treatment of infections is primarily to blame for the increase in bacterial resistance. Added to the problem is the slow rate at which novel antibiotics are discovered and the many processes that need to be followed to classify antimicrobials safe for medical use. Xenorhabdus spp. of the family Enterobacteriaceae, mutualistically associated with entomopathogenic nematodes of the genus Steinernema, produce a variety of antibacterial peptides, including bacteriocins, depsipeptides, xenocoumacins and PAX (peptide antimicrobial-Xenorhabdus) peptides, plus additional secondary metabolites with antibacterial and antifungal activity. The secondary metabolites of some strains are active against protozoa and a few have anti-carcinogenic properties. It is thus not surprising that nematodes invaded by a single strain of a Xenorhabdus species are not infected by other microorganisms. In this review, the antimicrobial compounds produced by Xenorhabdus spp. are listed and the gene clusters involved in synthesis of these secondary metabolites are discussed. We also review growth conditions required for increased production of antimicrobial compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The control of insects of medical importance, such as Aedes aegypti and Aedes albopictus are still the only effective way to prevent the transmission of diseases, such as dengue, chikungunya and Zika. Their control is performed mainly using chemical products; however, they often have low specificity to non-target organisms, including humans. Also, studies have reported resistance to the most commonly used insecticides, such as the organophosphate and pyrethroids. Biological control is an ecological and sustainable method since it has a slow rate of insect resistance development. Bacterial species of the genera Xenorhabdus and Photorhabdus have been the target of several research groups worldwide, aiming at their use in agricultural, pharmaceutical and industrial products. This review highlights articles referring to the use of Xenorhabdus and Photorhabdus for insects and especially for mosquito control proposing future ways for their biotechnological applicability. Approximately 24 species of Xenorhabdus and five species of Photorhabdus have been described to have insecticidal properties. These studies have shown genes that are capable of encoding low molecular weight proteins, secondary toxin complexes and metabolites with insecticide activities, as well as antibiotic, fungicidal and antiparasitic molecules. In addition, several species of Xenorhabdus and Photorhabdus showed insecticidal properties against mosquitoes. Therefore, these biological agents can be used in new control methods, and must be, urgently considered in short term, in studies and applications, especially in mosquito control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Entomopathogenic bacteria (EPBs), insect pathogens that produce pest-specific toxins, are environmentally-friendly alternatives to chemical insecticides. However, the most important problem with EPBs application is their limited field stability. Moreover, environmental factors such as solar radiation, leaf temperature, and vapor pressure can affect the pathogenicity of these pathogens and their toxins. Scientists have conducted intensive research to overcome such problems. Genetic engineering has great potential for the development of new engineered entomopathogens with more resistance to adverse environmental factors. Genetically modified entomopathogenic bacteria (GM-EPBs) have many advantages over wild EPBs, such as higher pathogenicity, lower spraying requirements and longer-term persistence. Genetic manipulations have been mostly applied to members of the bacterial genera Bacillus, Lysinibacillus, Pseudomonas, Serratia, Photorhabdus and Xenorhabdus. Although many researchers have found that GM-EPBs can be used safely as plant protection bioproducts, limited attention has been paid to their potential ecological impacts. The main concerns about GM-EPBs and their products are their potential unintended effects on beneficial insects (predators, parasitoids, pollinators, etc.) and rhizospheric bacteria. This review address recent update on the significant role of GM-EPBs in biological control, examining them through different perspectives in an attempt to generate critical discussion and aid in the understanding of their potential ecological impacts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号