Telavancin

Telavancin
  • 文章类型: Journal Article
    Members of the genus Corynebacterium are increasingly recognized as pathobionts and can be very resistant to antimicrobial agents. Previous studies have demonstrated that Corynebacterium striatum can rapidly develop high-level daptomycin resistance (HLDR) (MIC, ≥256 μg/ml). Here, we conducted a multicenter study to assay for this in vitro phenotype in diverse Corynebacterium species. Corynebacterium clinical isolates (n = 157) from four medical centers were evaluated. MIC values to daptomycin, vancomycin, and telavancin were determined before and after overnight exposure to daptomycin to identify isolates able to rapidly develop daptomycin nonsusceptibility. To investigate assay reproducibility, 18 isolates were evaluated at three study sites. In addition, the stability of daptomycin nonsusceptibility was tested using repeated subculture without selective pressure. The impact of different medium brands was also investigated. Daptomycin nonsusceptibility emerged in 12 of 23 species evaluated in this study (C. afermentans, C. amycolatum, C. aurimucosum, C. bovis, C. jeikeium, C. macginleyi, C. pseudodiphtheriticum, C. resistens, C. simulans, C. striatum, C. tuberculostearicum, and C. ulcerans) and was detected in 50 of 157 (31.8%) isolates tested. All isolates displayed low (susceptible) MIC values to vancomycin and telavancin before and after daptomycin exposure. Repeated subculture demonstrated that 2 of 9 isolates (22.2%) exhibiting HLDR reverted to a susceptible phenotype. Of 30 isolates tested on three medium brands, 13 (43.3%) had differences in daptomycin MIC values between brands. Multiple Corynebacterium species can rapidly develop daptomycin nonsusceptibility, including HLDR, after a short daptomycin exposure period.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Clinical Trial, Phase III
    The broth microdilution (BMD) MIC testing method for telavancin was recently revised BMD (rBMD) to improve accuracy and reproducibility. Staphylococcus aureus isolates from telavancin phase 3 complicated skin and skin-structure infection (cSSSI) studies were tested using the rBMD method. Retesting of 1132 isolates produced MICs ranging from ≤0.015 to 0.12μg/mL that were 8-fold lower than the original method. All isolates tested remained susceptible to telavancin at the revised susceptibility breakpoint of 0.12μg/mL. The clinical cure and microbiological eradication rates were 90% (368/409) and 89% (366/409) for telavancin-treated patients, and were similar for patients with methicillin-susceptible and -resistant S. aureus isolates and S. aureus isolates with elevated vancomycin MICs (≥1μg/mL). The data presented here are aimed to update the literature and better inform clinicians and clinical microbiologists about the revised telavancin MICs, as well as the corresponding clinical and microbiological cure rates for cSSSI patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The worldwide epidemic of antibiotic resistance is in danger of ending the golden age of antibiotic therapy. Resistance impacts on all areas of medicine, and is making successful empirical therapy much more difficult to achieve. Staphylococcus aureus demonstrates a unique ability to quickly respond to each new antibiotic with the development of a resistance mechanism, starting with penicillin, until the most recent, linezolid and daptomycin. Methicillin resistant S. aureus (MRSA) has become endemic today in hospitals worldwide. Resistance to the newer antimicrobial-agents - linezolid, vancomycin, teicoplanin, and daptomycin are been reported and also the fear of pandrug-resistance. This study was carried out to know the antimicrobial resistant pattern of MRSA to newer antibiotic, to know any isolates are extensively-drug resistant (XDR)/pandrug resistant (PDR), inducible macrolide-lincosamide streptogramin B (iMLSB), and mupirocin resistance. Thirty-six MRSA isolates resistant to the routinely tested antibiotic were further tested for list of antibiotic by a group of international experts. Isolates were tested for iMLSB and mupirocin resistance by the disk diffusion method. Of 385 MRSA, 36 (9.35%) isolates of MRSA were resistant to the routinely tested antibiotic. Among these 36 MRSA isolates, none of our isolates were XDR/PDR or showed resistant to anti-MRSA cephalosporins (ceftaroline), phosphonic acids, glycopeptides, glycylcyclines, and fucidanes. Lower resistance was seen in oxazolidinones (2.78%), streptogramins (5.56%), lipopeptide (5.56%). Thirty-four (94.44%) isolates showed constitutive MLSB (cMLSB) resistance and two (5.56%) iMLSB phenotypes. High- and low-level mupirocin resistance were seen in 13 (36.11%) and six (16.67%), respectively. In our study, none of our isolates were XDR or PDR. No resistance was observed to ceftaroline, telavancin, teicoplanin, and vancomycin; but the presence of linezolid resistance (1, 2.28%) and daptomycin resistance (2, 5.56%) in our rural set-up is a cause of concern.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号