TRP channels

TRP 通道
  • 文章类型: Journal Article
    TRPC6 (transient receptor potential cation channels; canonical subfamily C, member 6) is widespread localized in mammalian tissues like kidney and lung and associated with progressive proteinuria and pathophysiological pulmonary alterations, e.g., reperfusion edema or lung fibrosis. However, the understanding of TRPC6 channelopathies is still at the beginning stages. Recently, by chemical diversification of (+)-larixol originating from Larix decidua resin traditionally used for inhalation, its methylcarbamate congener, named SH045, was obtained and identified in functional assays as a highly potent, subtype-selective inhibitor of TRPC6. To pave the way for use of SH045 in animal disease models, this study aimed at developing a capable bioanalytical method and to provide exploratory pharmacokinetic data for this promising derivative. According to international guidelines, a robust and selective LC-MS/MS method based on MRM detection in positive ion mode was established and validated for quantification of SH045 in mice plasma, whereby linearity and accuracy were demonstrated for the range of 2-1600 ng/mL. Applying this method, the plasma concentration time course of SH045 following single intraperitoneal administration (20 mg/kg body weight) revealed a short half-life of 1.3 h. However, the pharmacological profile of SH045 is promising, as five hours after administration, plasma levels still remained sufficiently higher than published low nanomolar IC50 values. Summarizing, the LC-MS/MS method and exploratory pharmacokinetic data provide essential prerequisites for experimental pharmacological TRPC6 modulation and translational treatment of TRPC6 channelopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    This cross-sectional study examined, for the first time, a large cohort of patients with trigeminal neuralgia, to ascertain the occurrence of familial cases, providing a systematic description of clinical features of familial disease. Since there is evidence linking hyperexcitability of trigeminal ganglion neurons to trigeminal neuralgia, we also carried out an exploratory genetic analysis of the neuronal electrogenisome in these patients.
    We recorded familial occurrence by systematically interviewing all patients with a definite diagnosis of classical or idiopathic trigeminal neuralgia. We found 12 occurrences of trigeminal neuralgia with positive family history out of 88 enrolled patients. Whole-exome sequencing was carried out in 11 patients. We concentrated on the genetic variants within a 173-gene panel, comprising channel genes encoding sodium, potassium, calcium, chloride, transient receptor potential channels, and gap junction channels. Gene expression profiles were based on published RNA sequencing datasets of rodent/human trigeminal ganglia tissues, with a focus on genes related to neuronal excitability.
    In patients with familial trigeminal neuralgia, pain was more often located in the right, second division. All patients reported triggers. Four patients experienced concomitant continuous pain. Whole-exome sequencing analysis within the trigeminal ganglion electrogenisome identified 41 rare variants in ion channels, consisting of variants in sodium channels (6), potassium channels (10), chloride channels (5), calcium channels (7), transient receptor potential channels (12), and gap junction channels (1). In one patient, a previously profiled gain-of-function mutation in SCN10A (Nav1.8 p.Ala1304Thr), previously reported in painful neuropathy, was found; this variant was not present in unaffected siblings.
    Our results suggest that familial occurrence of trigeminal neuralgia is more common than previously considered. Although our results demonstrate variants in genes encoding voltage-gated ion channels and transient receptor potential channels within these patients, further study will be needed to determine their roles in the pathogenesis of trigeminal neuralgia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Cerebral vasospasm remains a serious problem affecting morbidity and mortality in patients with subarachnoid hemorrhage (SAH) during neurosurgery. We aimed to demonstrate the role of the transient receptor potential channel and other channels for Ca2+ in the etiology of cerebral vasospasm using 2-aminoethyl diphenylborinate (2-APB) and the effective dose range of an unstudied pharmacological agent, which can limit vasospasm.
    METHODS: We performed an experimental study using 32 Sprague-Dawley rats divided into 4 groups: sham group (n = 8), SAH group (n = 8), 2-APB group (SAH rats intraperitoneally administered with 0.5 mg/kg 2-APB; n = 8), and 2-APB-2 group (SAH rats intraperitoneally administered with 2 mg/kg 2-APB; n = 8). The rats were sacrificed after 24 hours, and superoxide dismutase, glutathione peroxidase, malondialdehyde, tumor necrosis factor-α, and interleukin-1β in the brain tissue and serum were measured. The histopathological investigation of brain tissue included measurement of the luminal diameter and wall thickness of the basilar artery (BA), and apoptotic cells in the hippocampus were counted after caspase staining.
    RESULTS: Autologous arterial blood injection into the cisterna magna caused vasospasm in rats. 2-APB treatment increased the BA wall thickness and reduced the BA lumen diameter, inducing significant vascular changes. 2-APB also alleviated cell apoptosis at 24 hours after SAH.
    CONCLUSIONS: In experimental SAH in rats, 2-APB treatment increased the BA wall thickness and reduced the BA lumen diameter, inducing significant vascular changes. 2-APB also alleviated cell apoptosis at 24 hours after SAH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号