Stimuli responsive

刺激反应性
  • 文章类型: Journal Article
    Self-assembly of asymmetric block copolymers (BCPs) around active pore edges has emerged as an important strategy to produce smart membranes with tunable pathways for solute transport. However, thus far, it is still challenging to manipulate pore shape and functionality for directional transformation under external stimuli. Here, a versatile strategy by mesoscale simulations to design stimuli-responsive pores with various edge decorations in hybrid membranes is reported. Dopant BCPs are used as decorators to stabilize pore edges and extend their function in reconfiguring pores in response to repeated membrane stretching/shrinking caused by external stimuli. The decoration morphologies are predictable since the assemblies of dopant BCPs around pore edges are closely related to their self-assemblies in solution. The coassembly between different BCPs in the hybrid membrane for the control of pore morphology is featured, and the parameter settings, including block incompatibility and molecular architecture for the construction of a specific pore, are determined. Results show that harnessed dopant BCPs in the hybrid membrane can enhance pore formation and induce directional pore shape and functionality transformation. Diversified pore decorations exhibit potential that can be further explored in selective solute transport and the design of stimuli-responsive smart nanodevices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    Hydrogels can potentially prolong the release of a therapeutic protein, especially to treat blinding conditions. One challenge is to ensure that the protein and hydrogel are intimately mixed by better protein entanglement within the hydrogel. N-isopropylacrylamide (NIPAAM) gels are optimized with poly(ethylene glycol) diacrylate (PEDGA) crosslinker in the presence of either bevacizumab or PEG conjugated ranibizumab (PEG10 -Fabrani ). The release profiles of the hydrogels are evaluated using an outflow model of the eye, which is previously validated for human clearance of proteins. Release kinetics of in situ loaded bevacizumab-NIPAAM gels displays a prolonged bimodal release profile in phosphate buffered saline compared to bevacizumab loaded into a preformed NIPAAM gel. Bevacizumab release in simulated vitreous from in situ loaded gels is similar to bevacizumab control indicating that diffusion through the vitreous rather than from the gel is rate limiting. Ranibizumab is site-specifically PEGylated by disulfide rebridging conjugation. Prolonged and continuous release is observed with the in situ loaded PEG10 -Fabrani -NIPAAM gels compared to PEG10 -Fabrani injection (control). Compared to an unmodified protein, there is better mixing due to PEG entanglement and compatibility of PEG10 -Fabrani within the NIPAAM-PEDGA hydrogel. These encouraging results suggest that the extended release of PEGylated proteins in the vitreous can be achieved using injectable hydrogels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    This paper deals with the synthesis, characterization and property evaluation of drug-loaded magnetic microspheres with pH-responsive cross-linked polymer shell. The synthetic procedure consists of 3 steps, of which the first two comprise the synthesis of a poly methyl methacrylate (PMMA) template and the synthesis of a shell by using acrylic acid (AA) and methyl methacrylate (MMA) as monomers, and divinyl benzene (DVB) as cross-linker. The third step of the procedure refers to the formation of magnetic nanoparticles on the microsphere\'s surface. AA that attaches pH-sensitivity in the microspheres and magnetic nanoparticles in the inner and the outer surface of the microspheres, enhance the efficacy of this intelligent drug delivery system (DDS), which constitutes a promising approach toward cancer therapy. A number of experimental techniques were used to characterize the resulting microspheres. In order to investigate the in vitro controlled release behavior of the synthesized microspheres, we studied the Dox release percentage under different pH conditions and under external magnetic field. Hyperthermia caused by an alternating magnetic field (AFM) is used in order to study the doxorubicin (Dox) release behavior from microspheres with pH functionality. The in vivo fate of these hybrid-microspheres was tracked by labeling them with the γ-emitting radioisotope (99m)Tc after being intravenously injected in normal mice. According to our results, microsphere present a pH depending and a magnetic heating, release behavior. As expected, labeled microspheres were mainly found in the mononuclear phagocyte system (MPS). The highlights of the current research are: (i) to illustrate the advantages of controlled release by combining hyperthermia and pH-sensitivity and (ii) to provide noninvasive, in vivo information on the spatiotemporal biodistribution of these microsphere by dynamic γ-imaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号