Retinoic acid receptor

  • 文章类型: Journal Article
    了解酒精代谢及其调节的潜在机制,包括酒精代谢酶多态性的影响,对胎儿酒精谱系障碍的研究至关重要。这项研究的目的是在71名儿童的队列中鉴定关键酒精代谢酶的特定单核苷酸多态性。包括胎儿酒精综合症患儿,产前暴露于乙醇但没有胎儿酒精谱系障碍的儿童,和控制。我们假设某些与酒精代谢相关的遗传变异可能在这些人群中是固定的,给他们一个特定的酒精代谢概况。此外,这些酶的某些同工型的差异决定了它们对酒精的亲和力,也会影响视黄酸的代谢,这是中枢神经系统正常发育的关键。我们的结果表明,没有胎儿酒精谱系障碍性状的产前暴露于乙醇的儿童具有较高的ADH1B*3和ADH1C*1等位基因频率,这与酒精代谢增加有关,因此是孕妇饮酒后胎儿对循环酒精的保护因素,与具有对酒精亲和力较低的等位基因的FAS儿童相比。这项研究还揭示了在FAS人群中存在ADH4变体,该变体与致畸剂弱结合,允许增加毒性剂的循环并直接诱导胎儿发育异常。然而,两组均显示与维甲酸途径相关的基因表达失调,如视黄酸受体和类视黄醇X受体,参与开发,再生,和神经系统的维护。这些发现强调了理解酒精代谢之间相互作用的重要性。视黄酸通路和遗传因素在胎儿酒精综合征发生发展中的作用。
    Understanding the mechanisms underlying alcohol metabolism and its regulation, including the effect of polymorphisms in alcohol-metabolizing enzymes, is crucial for research on Fetal Alcohol Spectrum Disorders. The aim of this study was to identify specific single nucleotide polymorphisms in key alcohol-metabolizing enzymes in a cohort of 71 children, including children with fetal alcohol syndrome, children prenatally exposed to ethanol but without fetal alcohol spectrum disorder, and controls. We hypothesized that certain genetic variants related to alcohol metabolism may be fixed in these populations, giving them a particular alcohol metabolism profile. In addition, the difference in certain isoforms of these enzymes determines their affinity for alcohol, which also affects the metabolism of retinoic acid, which is key to the proper development of the central nervous system. Our results showed that children prenatally exposed to ethanol without fetal alcohol spectrum disorder traits had a higher frequency of the ADH1B*3 and ADH1C*1 alleles, which are associated with increased alcohol metabolism and therefore a protective factor against circulating alcohol in the fetus after maternal drinking, compared to FAS children who had an allele with a lower affinity for alcohol. This study also revealed the presence of an ADH4 variant in the FAS population that binds weakly to the teratogen, allowing increased circulation of the toxic agent and direct induction of developmental abnormalities in the fetus. However, both groups showed dysregulation in the expression of genes related to the retinoic acid pathway, such as retinoic acid receptor and retinoid X receptor, which are involved in the development, regeneration, and maintenance of the nervous system. These findings highlight the importance of understanding the interplay between alcohol metabolism, the retinoic acid pathway and genetic factors in the development of fetal alcohol syndrome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号