Quartz Crystal Microbalance Techniques

石英晶体微天平技术
  • 文章类型: Journal Article
    石英晶体微天平(QCM)是一种典型的声换能器,由于其表面质量的变化而发生频率偏移。其高灵敏度,鲁棒性,小尺寸设计,和数字输出导致其在化学领域的广泛应用,物理学,生物学医学,表面科学。质量敏感性是重要的参数之一,是使用QCM进行定量分析的基础,定义,计算,和质量灵敏度的测量方法,然后重点审查电极参数的影响(包括电极形状,电极直径,电极厚度,电极材料,等。)关于QCM的质量灵敏度分布。最后,还分析了工作频率对QCM质量灵敏度的影响。
    A quartz crystal microbalance (QCM) is a typical acoustic transducer that undergoes a frequency shift due to changes in the mass of its surface. Its high sensitivity, robustness, small size design, and digital output have led to its widespread development for application in the fields of chemistry, physics, biology, medicine, and surface science. Mass sensitivity is one of the vital parameters and forms the basis for quantitative analysis using QCMs. This review firstly introduces the importance, definition, calculation, and measuring method of the mass sensitivity and then focuses on reviewing the influence of electrode parameters (including electrode shape, electrode diameter, electrode thickness, electrode material, etc.) on the mass sensitivity distribution of QCMs. Finally, the effect of the operating frequency on the mass sensitivity of QCMs is also analyzed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    In this review article, the state of the art of gas sensors based on quartz crystal microbalance (QCM) for fruit freshness detection is overviewed from the aspects of development history, working principle, selection and modification of sensitive materials, and volatile organic compounds detection of fruits. According to the characteristics of respiratory intensity at the stage of fruit ripening, fruits can be divided into respiration climacteric fruits and non-climacteric fruits. In recent years, research has mainly focused on respiration climacteric fruits, such as bananas and mangoes, etc., while related studies on non-climacteric fruits have been rarely reported, except for citrus fruits. The preparation methods and structure design of sensitive materials based on physical/chemical adsorption mechanisms are further discussed according to the odor components that affect the freshness of fruits, namely alkenes, esters, aldehydes and alcohols.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Amelognein protein plays a vital role in the formation and mineralization of enamel matrix. Amelogenin structure is complex in nature and researchers have studied it with different experimental techniques. Considering its important role, there is a need to understand this important protein, which has been discussed in detail in this review. In addition, various experimental techniques to study amelogenin protein used previously have been tackled along with their advantages and disadvantages. A selection of 67 relevant articles/book chapters was included in this study. The review concluded that amelogenins act as nanospheres or spacers for the growth of enamel crystals. Various experimental techniques can be used to study amelogenins, however, their advantages and drawbacks should be kept in mind before performing analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Implants are exposed to a complex physiological environment that contains various organic compounds, especially proteins. The adsorption of proteins has an immense influence on the corrosion, biocompatibility and wear properties of implantable metals. Proteins engage in multiple processes that could potentially inhibit or promote metal degradation, depending on the type of proteins, their concentration and the properties of the implant material. In the bio corrosion process, proteins are denatured and transform into a film on the metal surface, inhibiting corrosion. This film is found on many retrieved artificial joints, especially on worn areas, and can protect the passive film from scrapping due to its lubricating effect, thus decreasing tribocorroion. On the other hand, the interactions of metal ions with proteins (and amino acids) create colloidal organometallic complexes. Transport of the complex compounds away from the interface increases dissolution rates; thus, it accelerates the corrosion of metallic implants. The influence of protein adsorption on the corrosion behaviour of metallic biomaterials is presented in this review. Biocompatible metals that are favourably used as implants such as stainless steel, Co-Cr alloys, Ti alloys and biodegradable Mg and Fe alloys are specifically addressed. We have highlighted the adsorption phenomenon of protein on metallic implants, the interaction of proteins with metallic implants and the role of protein adsorption on implant biocorrosion behaviour as well as their wear resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    生物传感器在不同的应用中发挥重要作用,如医疗诊断,环境监测,食品安全,以及生物分子相互作用的研究。高度敏感,无标签和一次性生物传感器对于许多临床应用是特别期望的。在过去的十年里,薄膜体声波谐振器(FBAR)已被开发为生物传感器,因为它们的谐振频率高,基础质量小(因此灵敏度更高)。更低的成本,无标签的能力和小尺寸。本文综述了用于FBAR的压电材料,设备结构的优化,以及它们作为生物传感器在广泛的生物应用中的应用,例如抗原的检测,DNA和小生物分子。还讨论了它们与微流体设备和高通量检测的集成。
    Biosensors play important roles in different applications such as medical diagnostics, environmental monitoring, food safety, and the study of biomolecular interactions. Highly sensitive, label-free and disposable biosensors are particularly desired for many clinical applications. In the past decade, film bulk acoustic resonators (FBARs) have been developed as biosensors because of their high resonant frequency and small base mass (hence greater sensitivity), lower cost, label-free capability and small size. This paper reviews the piezoelectric materials used for FBARs, the optimisation of device structures, and their applications as biosensors in a wide range of biological applications such as the detection of antigens, DNAs and small biomolecules. Their integration with microfluidic devices and high-throughput detection are also discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这篇综述描述了过去30-40年在生物医学表面分析方面取得的一些重大进展。从均质表面的单一技术分析开始,它已经发展成为一种互补的,获得详细的多技术方法,有关生物医学界感兴趣的各种表面和界面的全面信息。每种表面分析技术都取得了重大进展,以及如何结合这些技术以提供有关生物表面和界面的详细信息。这些进步的驱动力是生物材料的表面是生物环境和生物材料之间的界面,所以,最先进的仪器仪表,实验方案,需要开发数据分析方法,以便可以确定生物医学设备的详细表面结构和组成并与其生物学性能相关。这些进步的例子,以及未来发展的领域,被描述为固定的蛋白质,复杂的生物医学表面,纳米粒子,和生物材料的2D/3D成像。
    This review describes some of the major advances made in biomedical surface analysis over the past 30-40 years. Starting from a single technique analysis of homogeneous surfaces, it has been developed into a complementary, multitechnique approach for obtaining detailed, comprehensive information about a wide range of surfaces and interfaces of interest to the biomedical community. Significant advances have been made in each surface analysis technique, as well as how the techniques are combined to provide detailed information about biological surfaces and interfaces. The driving force for these advances has been that the surface of a biomaterial is the interface between the biological environment and the biomaterial, and so, the state-of-the-art in instrumentation, experimental protocols, and data analysis methods need to be developed so that the detailed surface structure and composition of biomedical devices can be determined and related to their biological performance. Examples of these advances, as well as areas for future developments, are described for immobilized proteins, complex biomedical surfaces, nanoparticles, and 2D/3D imaging of biological materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Combined experimental and computational studies of lipid membranes and liposomes, with the aim to attain mechanistic understanding, result in a synergy that makes possible the rational design of liposomal drug delivery system (LDS) based therapies. The LDS is the leading form of nanoscale drug delivery platform, an avenue in drug research, known as \"nanomedicine\", that holds the promise to transcend the current paradigm of drug development that has led to diminishing returns. Unfortunately this field of research has, so far, been far more successful in generating publications than new drug therapies. This partly results from the trial and error based methodologies used. We discuss experimental techniques capable of obtaining mechanistic insight into LDS structure and behavior. Insight obtained purely experimentally is, however, limited; computational modeling using molecular dynamics simulation can provide insight not otherwise available. We review computational research, that makes use of the multiscale modeling paradigm, simulating the phospholipid membrane with all atom resolution and the entire liposome with coarse grained models. We discuss in greater detail the computational modeling of liposome PEGylation. Overall, we wish to convey the power that lies in the combined use of experimental and computational methodologies; we hope to provide a roadmap for the rational design of LDS based therapies. Computational modeling is able to provide mechanistic insight that explains the context of experimental results and can also take the lead and inspire new directions for experimental research into LDS development. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Chiral recognition is the fundamental property of many biological molecules and is a quite important field in pharmaceutical analysis because of the pharmacologically different activities of enantiomers in living systems. Enantio-differentiating signal of the sensor requires specific interaction between the chiral compounds (one or a mixture of enantiomers) in question and the selector. This type of interaction is controlled normally by at least three binding centers, whose mutual arrangement and interacting characteristics with one of the enantiomers effectively control the selectivity of recognition. Molecular imprinting technology provides a unique opportunity for the creation of three-dimensional cavities with tailored recognition properties. Over the past decade, this field has expanded considerably across the variety of disciplines, leading to novel transduction approaches and many potential applications. The state-of-art of molecularly imprinted polymer-based chiral recognition might set an exotic trend toward the development of chiral sensors. The objective of this review is to provide comprehensive knowledge and information to all researchers who are interested in exploiting molecular imprinting technology toward the rational design of chiral sensors operating on different transduction principles, ranging from electrochemical to piezoelectric, being used for the detection of chiral compounds as they pose significant impact on the understanding of the origin of life and all processes that occur in living organisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The mass sensitivity of quartz-crystal microbalance (QCM) was drastically improved by removing electrodes and wires attached on the quartz surfaces. Instead of wire connections, intended vibrations of quartz oscillators were excited and detected by antennas through electromagnetic waves. This noncontacting measurement is the key for ultrahigh-sensitive detection of proteins in liquids as well as quantitative measurements. This review shows the principle of wireless QCMs, their applications to studying interactions among biomolecules and aggregation reactions of amyloid β peptides, and the next-generation MEMS QCM, the resonance acoustic microbalance with naked embedded quartz (RAMNE-Q).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Methods based on sandwich-type immunosensors and immunoassays have been developed for detection of multivalent antigens/analytes with more than one eptiope due to the use of two matched antibodies. High-affinity antibodies and appropriate labels are usually employed for the amplification of detectable signal. Recent research has looked to develop innovative and powerful novel nanoparticle labels, controlling and tailoring their properties in a very predictable manner to meet the requirements of specific applications. This articles reviews recent advances, exploiting nanoparticle labels, in the sandwich-type immunosensors and immunoassays. Routine approaches involve noble metal nanoparticles, carbon nanomaterials, semiconductor nanoparticles, metal oxide nanostructures, and hybrid nanostructures. The enormous signal enhancement associated with the use of nanoparticle labels and with the formation of nanoparticle-antibody-antigen assemblies provides the basis for sensitive detection of disease-related proteins or biomolecules. Techniques commonly rely on the use of biofunctionalized nanoparticles, inorganic-biological hybrid nanoparticles, and signal tag-doped nanoparticles. Rather than being exhaustive, this review focuses on selected examples to illustrate novel concepts and promising applications. Approaches described include the biofunctionalized nanoparticles, inorganic-biological hybrid nanoparticles, and signal tage-doped nanoparticles. Further, promising application in electrochemical, mass-sensitive, optical and multianalyte detection are discussed in detail.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号