Protein Transport

蛋白质转运
  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    舞蹈细胞增多症(ChAc)是一种罕见的常染色体隐性遗传神经退行性疾病,由空泡蛋白分选13A(VPS13A)的致病变体引起。迄今为止,只有少数ChAc患者被报道,VPS13A的变异谱尚未完全阐明。我们描述了一名36岁妇女的病例,该妇女自30岁以来一直经历口面运动障碍。在使用下一代测序的遗传研究中,VPS13A的2个变体,无义变体c.4411C>T(p.Arg1471Ter)和剪接变体c.145-2A>T,已确定。通过文献综述,剪接变异c.145-2A>T被新分类为致病变异。因此,根据典型的临床表现诊断为ChAc,实验室发现,和成像结果。
    Chorea-acanthocytosis (ChAc) is a rare autosomal recessive neurodegenerative disorder caused by pathogenic variants of the vacuolar protein sorting 13A (VPS13A). Only a few patients with ChAc have been reported to date, and the variant spectrum of VPS13A has not been completely elucidated. We describe the case of a 36-year-old woman who had been experiencing orofacial dyskinesia since age 30 years. In a genetic study using next-generation sequencing, 2 variants of VPS13A, the nonsense variant c.4411C>T (p.Arg1471Ter) and the splicing variant c.145-2A>T, were identified. The splicing variant c.145-2A>T was newly classified as a pathogenic variant through a literature review. Consequently, the patient was diagnosed with ChAc based on the typical clinical manifestations, laboratory findings, and imaging results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    SLC25A36 is a pyrimidine nucleotide carrier playing an important role in maintaining mitochondrial biogenesis. Deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction. In human beings, diseases triggered by SLC25A36 mutations have not been described yet. We report the first known case of SLC25A36 deficiency in a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. Whole exome analysis identified the homozygous mutation c.803dupT, p.Ser269llefs*35 in the SLC25A36 gene. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with oral uridine led to an improvement of thyroid function and obstipation, increase of growth and developmental progress. Our findings suggest an important role of SLC25A36 in hormonal regulations and oral uridine as a safe and effective treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    Long QT syndrome is one of the most common hereditary channelopathies inducing fatal arrhythmias and sudden cardiac death. We identified in a sudden arrhythmic death syndrome case a C-term KCNH2 mutation (c.3457C > T; p.His1153Tyr) classified as variant of unknown significance and functional impact. Heterologous expression in HEK293 cells combined with western-blot, flow-cytometry, immunocytochemical and microscope analyses shows no modification of channel trafficking to the cell membrane. Electrophysiological studies reveal that the mutation causes a loss of HERG channel function through an alteration of channel biophysical properties that reduces the current density leading to LQT2. These results provide the first functional evidence for H1153Y-KCNH2 mutation-induced abnormal channel properties. They concur with previous biophysical and clinical presentations of a survived patient with another variant that is G1036D. Therefore, the present report importantly highlights the potential severity of variants that may have useful implications for treatment, surveillance, and follow-up of LQT2 patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Historically, structural biology has been largely centered on in vitro approaches as the dominant technique to obtain indispensable high-resolution data. In situ structural biology is now poised to contribute with high-precision observations in a near-physiological context. Mass spectrometry, electron tomography, and fluorescence microscopy are opening up new opportunities for structural analysis, including the study of the protein machinery in living cells. The complementarity between studies is increasingly used to reveal biologically significant observations. Here we compare two complementary studies addressing the mechanisms of vesicle tethering with in vitro and in situ approaches. Cryoelectron microscopy and live-cell imaging assisted by anchoring platforms team up to explore elusive mechanisms of exocytosis, showing directions of future research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Several mechanisms of pharmacokinetic, metabolic, and regulatory nature have been elucidated to take part or act in concert in the phenomenon of multidrug resistance (MDR). MDR is characterized by cross-resistance of cells against chemotherapeutic agents, which are used for treatment of e.g., cancer, bacterial infections, or human immunodeficiency virus (HIV) infections. One group of proteins that combines all three stated aspects-the metabolism and distribution of drugs as well as their own regulation-is adenosine triphosphate-binding cassette (ABC) transporters. These efflux pumps use the energy of adenosine triphosphate hydrolysis for drug translocation from the membrane and the cytosol to the extracellular space, often with cotransport of a cosubstrate. Multidrug resistance-associated protein 1 (MRP1, ABCC1) had been discovered as one major key player in cancer-related MDR. The xenobiotic substrates include anthracyclines, vinca alkaloids, podophyllotoxins, as well as glutathione (GSH)-adducts of certain cytostatics. Contrary to other transport proteins involved in cancer-related MDR the activity of MRP1 is related to the GSH content of cells. A modern strategy to overcome MRP1-associated MDR is besides its inhibition the activation of GSH efflux, enforcing cell death due to cellular stress. In addition, it has recently been found that MRP1 contributes to the β-amyloid protein clearance in Alzheimer\'s disease (AD). Collectively, transport activation of MRP1 is of therapeutic value, and furthermore helps to elucidate the transport protein function and the mechanisms behind it. This review is meant to summarize the known concepts of MRP1 activation, which might contribute to a further understanding of MRP1 in particular and ABC transporters in general.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    While profiling of cell surface receptors grants valuable insight on cell phenotype, surface receptors alone cannot fully describe activated downstream signaling pathways, detect internalized receptor activity, or indicate constitutively active signaling in subcellular compartments. To measure surface-bound and intracellular targets in the same cell, we introduce a tandem single-cell assay that combines immunofluorescence of surface-bound epithelial cellular adhesion molecule (EpCAM) with subsequent protein polyacrylamide gel electrophoresis (PAGE) of unfixed MCF7 breast cancer cells. After surface staining and cell lysis, surface EpCAM is analyzed by single-cell PAGE, concurrent with immunoprobing of intracellular targets. Consequently, the single-cell electrophoresis step reports localization of both surface and intracellular targets. Unbound intracellular EpCAM is readily resolved from surface EpCAM immunocomplex owing to a ∼30% mobility shift. Flow cytometry and immunofluorescence are in concordance with single-cell PAGE. Lastly, we challenged the stability of the EpCAM immunocomplexes by varying ionic and non-ionic component concentrations in the lysis buffer, the lysis time, and electrophoresis duration. As expected, the harsher conditions proved most disruptive to the immunocomplexes. The compatibility of live-cell immunostaining with single-cell PAGE eliminates the need to perform single-cell imaging by condensing read-out of both surface-bound proteins (as low mobility immune complexes) and intracellular targets to a single immunoblot, thus linking cell type and state.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Chaperones are central players in maintaining the proteostasis in all living cells. Besides highly conserved generic chaperones that assist protein folding and assembly in the cytosol, additional more specific chaperones have evolved to ensure the successful trafficking of proteins with extra-cytoplasmic locations. Associated with the distinctive secretion systems present in bacteria, different dedicated chaperones have been described that not only keep secretory proteins in a translocation competent state, but often are also involved in substrate targeting to the specific translocation channel. Recently, a new class of such chaperones has been identified that are involved in the specific recognition of substrates transported via the type VII secretion pathway in mycobacteria. In this minireview, we provide an overview of the different bacterial chaperones with a focus on their roles in protein secretion and will discuss in detail the roles of mycobacterial type VII secretion chaperones in substrate recognition and targeting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Chemical modifications such as PEG, polyamine and radiolabeling on proteins can alter their pharmacokinetic behavior and their blood-brain barrier (BBB) transport characteristics. NOTA, i.e. 1,4,7-triazacyclononane-1,4,7-triacetic acid, is a bifunctional chelating agent that has attracted the interest of the scientific community for its high complexation constant with metals like gallium. Until now, the comparative BBB transport characteristics of NOTA-modified proteins versus unmodified proteins are not yet described.
    METHODS: Somatropin (i.e. recombinant human growth hormone), NOTA-conjugated somatropin and gallium-labelled NOTA-conjugated somatropin were investigated for their brain penetration characteristics (multiple time regression and capillary depletion [CD]) in an in vivo mice model to determine the blood-brain transfer properties.
    RESULTS: The three compounds showed comparable initial brain influx, with Kin=0.38±0.14 µL/(g×min), 0.36±0.16 µL/(g×min) and 0.28±0.18 µL/(g×min), respectively. CD indicated that more than 80% of the influxed compounds reached the brain parenchyma. All three compounds were in vivo stable in serum and brain during the time frame of the experiments.
    CONCLUSIONS: Our results show that modification of NOTA as well as gallium chelation onto proteins, in casu somatropin, does not lead to a significantly changed pharmacokinetic profile at the blood-brain barrier.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号