Patch-Clamp Techniques

膜片钳技术
  • 文章类型: Case Reports
    GRIA3在Xq25编码谷氨酸离子型受体AMPA3型(GluA3),突触后谷氨酸门控离子通道介导神经传递的亚基。GRIA3中的半合子功能丧失(LOF)变异体在男性个体中引起神经发育障碍(NDD)。这里,我们报告一名男性患者在GRIA3出现功能获得(GOF)变异.我们在一个NDD:c.1844C>T的男孩中发现了GRIA3中的半合子从头错义变体(p。Ala615Val)使用全外显子组测序。他的神经体征,比如高张力和反射亢进,与先前具有LOFGRIA3变体的病例相反。卡马西平改善了他的癫痫发作和高张力,抑制突触前的谷氨酸释放。膜片钳记录显示,人GluA3突变体(p。Ala615Val)的脱敏和失活动力学较慢。表达具有我们的变体和Lurcher变体的人类GluA3突变体的蝇系,这使得离子通道泄漏,表现出发育缺陷,而表达拥有它们中任何一个的突变体的人却没有。总的来说,这些结果表明p.Ala615Val具有GOF效应。GRIA3GOF变体可能会导致与LOF变体不同的NDD表型,抑制谷氨酸能神经传递的药物可能会改善这种表型。这项研究应有助于完善GRIA3相关NDD的临床管理。
    GRIA3 at Xq25 encodes glutamate ionotropic receptor AMPA type 3 (GluA3), a subunit of postsynaptic glutamate-gated ion channels mediating neurotransmission. Hemizygous loss-of-function (LOF) variants in GRIA3 cause a neurodevelopmental disorder (NDD) in male individuals. Here, we report a gain-of-function (GOF) variant at GRIA3 in a male patient. We identified a hemizygous de novo missense variant in GRIA3 in a boy with an NDD: c.1844C > T (p.Ala615Val) using whole-exome sequencing. His neurological signs, such as hypertonia and hyperreflexia, were opposite to those in previous cases having LOF GRIA3 variants. His seizures and hypertonia were ameliorated by carbamazepine, inhibiting glutamate release from presynapses. Patch-clamp recordings showed that the human GluA3 mutant (p.Ala615Val) had slower desensitization and deactivation kinetics. A fly line expressing a human GluA3 mutant possessing our variant and the Lurcher variant, which makes ion channels leaky, showed developmental defects, while one expressing a mutant possessing either of them did not. Collectively, these results suggest that p.Ala615Val has GOF effects. GRIA3 GOF variants may cause an NDD phenotype distinctive from that of LOF variants, and drugs suppressing glutamatergic neurotransmission may ameliorate this phenotype. This study should help in refining the clinical management of GRIA3-related NDDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    Dravet syndrome is a severe form of childhood epilepsy characterized by frequent temperature-sensitive seizures and delays in cognitive development. In the majority (80%) of cases, Dravet syndrome is caused by mutations in the SCN1A gene, encoding the voltage-gated sodium channel NaV1.1, which is abundant in the central nervous system. Dravet syndrome can be caused by either gain-of-function mutation or loss of function in NaV1.1, making it necessary to characterize each novel mutation. Here we use a combination of patch-clamp recordings and immunocytochemistry to characterize the first known NH2-terminal amino acid duplication mutation found in a patient with Dravet syndrome, M72dup. M72dup does not significantly alter rate of fast inactivation recovery or rate of fast inactivation onset at any measured membrane potential. M72dup significantly shifts the midpoint of the conductance voltage relationship to more hyperpolarized potentials. Most interestingly, M72dup significantly reduces peak current of NaV1.1 and reduces membrane expression. This suggests that M72dup acts as a loss-of-function mutation primarily by impacting the ability of the channel to localize to the plasma membrane.NEW & NOTEWORTHY Genetic screening of a patient with Dravet syndrome revealed a novel mutation in SCN1A. Of over 700 SCN1A mutations known to cause Dravet syndrome, M72dup is the first to be identified in the NH2-terminus of NaV1.1. We studied M72dup using patch-clamp electrophysiology and immunocytochemistry. M72dup causes a decrease in membrane expression of NaV1.1 and overall loss of function, consistent with the role of the NH2-terminal region in membrane trafficking of NaV1.1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Efforts to breed salt tolerant crops could benefit from investigating previously unexplored traits. One of them is a tissue succulency. In this work, we have undertaken an electrophysiological and biochemical comparison of properties of mesophyll and storage parenchyma leaf tissues of a succulent halophyte species Carpobrotus rosii (\"pigface\"). We show that storage parenchyma cells of C. rossii act as Na+ sink and possessed both higher Na+ sequestration (298 vs. 215 mM NaCl in mesophyll) and better K+ retention ability. The latter traits was determined by the higher rate of H+ -ATPase operation and higher nonenzymatic antioxidant activity in this tissue. Na+ uptake in both tissues was insensitive to either Gd3+ or elevated Ca2+ ruling out involvement of nonselective cation channels as a major path for Na+ entry. Patch-clamp experiments have revealed that Caprobrotus plants were capable to downregulate activity of fast vacuolar channels when exposed to saline environment; this ability was higher in the storage parenchyma cells compared with mesophyll. Also, storage parenchyma cells have constitutively lower number of open slow vacuolar channels, whereas in mesophyll, this suppression was inducible by salt. Taken together, these results provide a mechanistic basis for efficient Na+ sequestration in the succulent leaf tissues.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BACKGROUND: Cardiovascular safety assessment requires accurate evaluation of QT interval, which depends on the length of the cardiac cycle and also on core body temperature (BT). Increases in QT interval duration have been shown to be associated with decreases in BT in dogs.
    METHODS: An example of altered QT interval duration associated with changes in body temperature observed during a 4-week regulatory toxicology study in dogs is presented. Four groups of Beagle dogs received the vehicle or test item once on Day 1, followed by a 4-week observation period. Electrocardiogram (ECG) parameters were continuously recorded on Days 1 and 26 by jacketed external telemetry (JET). Core body temperature (BT) was measured with a conventional rectal thermometer at appropriate time-points during the Day 1 recording period.
    RESULTS: Decreased BT was observed approximately 2h after treatment on Day 1, along with increased QT interval duration corrected according to the Van de Water formula (QTcV), but the effect was no longer observed after correction for changes in BT [QTcVcT=QTcV-14(37.5-BT)] according to the Van der Linde formula. No significant changes in QTcV were reported at the end of the observation period, on Day 26.
    CONCLUSIONS: The present study demonstrates that core body (rectal) temperature can easily be monitored at appropriate time-points during JET recording in regulatory toxicology studies in dogs, in order to correct QT interval duration values for treatment-related changes in BT. The successful application of the Van der Linde formula to correct QTc prolongation for changes in BT was demonstrated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    离子通道偶联受体(ICCR)是由G蛋白偶联受体和离子通道构建的人工蛋白质。它们作为分子生物传感器的用途在诊断和高通量药物筛选中很有希望。ICCR的概念最初通过毒蕈碱受体M2与向内整流钾通道Kir6.2的组合得到了验证。长的蛋白质工程阶段已经导致M2-Kir6.2构建体的生化表征。然而,其分子机制尚待阐明。特别是,重要的是确定其激动剂乙酰胆碱对M2的激活如何通过M2-Kir6.2键触发Kir6.2通道的调节。在本研究中,我们已经开发并验证了一种计算方法,可以从M2和Kir6.2的分子结构重建M2-Kir6.2嵌合体的模型。该方案首先在μ阿片受体的已知蛋白质复合物上得到验证,CXCR4受体和Kv1.2钾通道。当应用于M2-Kir6.2时,我们的协议产生了两个可能的模型,对应于M2的两个不同方向。两种模型都强调了M2螺旋I和VIII在与Kir6.2相互作用中的作用,以及Kir6.2N末端在通道开放中的作用。这两个假设将在M2-Kir6.2构建体的未来实验研究中进行探索。
    Ion channel-coupled receptors (ICCR) are artificial proteins built from a G protein-coupled receptor and an ion channel. Their use as molecular biosensors is promising in diagnosis and high-throughput drug screening. The concept of ICCR was initially validated with the combination of the muscarinic receptor M2 with the inwardly rectifying potassium channel Kir6.2. A long protein engineering phase has led to the biochemical characterization of the M2-Kir6.2 construct. However, its molecular mechanism remains to be elucidated. In particular, it is important to determine how the activation of M2 by its agonist acetylcholine triggers the modulation of the Kir6.2 channel via the M2-Kir6.2 linkage. In the present study, we have developed and validated a computational approach to rebuild models of the M2-Kir6.2 chimera from the molecular structure of M2 and Kir6.2. The protocol was first validated on the known protein complexes of the μ-opioid Receptor, the CXCR4 receptor and the Kv1.2 potassium channel. When applied to M2-Kir6.2, our protocol produced two possible models corresponding to two different orientations of M2. Both models highlights the role of the M2 helices I and VIII in the interaction with Kir6.2, as well as the role of the Kir6.2 N-terminus in the channel opening. Those two hypotheses will be explored in a future experimental study of the M2-Kir6.2 construct.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    BACKGROUND: Voltage- and state-dependent blocks are important mechanisms by which drugs affect voltage-gated ionic channels. However, spontaneous (i.e. drug-free) time-dependent changes in the activation and inactivation of hERG and Na(+) channels have been reported when using conventional whole-cell patch-clamp in HEK-293 cells.
    METHODS: hERG channels were heterologously expressed in HEK-293 cells and in Xenopus laevis oocytes. hERG current (IhERG) was recorded using both conventional and perforated whole-cell patch-clamp (HEK-293 cells), and two microelectrode voltage-clamp (Xenopus oocytes) in drug-free solution, and in the presence of the drug trazodone.
    RESULTS: In conventional whole-cell setup, we observed a spontaneous time-dependent hyperpolarizing shift in the activation curve of IhERG. Conversely, in perforated patch whole-cell (HEK-293 cells) or in two microelectrode voltage-clamp (Xenopus oocytes) activation curves of IhERG were very stable for periods ~50min. Voltage-dependent inactivation of IhERG was not significantly altered in the three voltage clamp configurations tested. When comparing voltage- and state-dependent effects of the antidepressant drug trazodone on IhERG, similar changes between the three voltage clamp configurations were observed as under drug-free conditions.
    CONCLUSIONS: The comparative analysis performed in this work showed that only under conventional whole-cell voltage-clamp conditions, a leftward shift in the activation curve of IhERG occurred, both in the presence and absence of drugs. These spontaneous time-dependent changes in the voltage activation gate of IhERG are a potential confounder in pharmacological studies on hERG channels expressed in HEK-293 cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Cardiotoxicity is a side effect that plagues modern drug design and is very often due to the off-target blockade of the human ether-à-go-go related gene (hERG) potassium channel. To better understand the structural determinants of this blockade, we designed and synthesized a series of 40 derivatives of clofilium, a class III antiarrhythmic agent. These were evaluated in radioligand binding and patch-clamp assays to establish structure-affinity relationships (SAR) for this potassium channel. Efforts were especially focused on studying the influence of the structural rigidity and the nature of the linkers composing the clofilium scaffold. It was shown that introducing triple bonds and oxygen atoms in the n-butyl linker of the molecule greatly reduced affinity without significantly modifying the pKa of the essential basic nitrogen. These findings could prove useful in the first stages of drug discovery as a systematic way of reducing the risk of hERG K(+) channel blockade-induced cardiotoxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    OBJECTIVE: To identify brain regions, cell types, or both that generate abnormal electrical discharge in tuberous sclerosis complex (TSC). Here we examined excitatory and inhibitory synaptic currents in human tissue samples obtained from a TSC patient with no discernible cortical tubers and acute neocortical brain slices from a mouse featuring synapsin-driven conditional deletion of a TSC1 gene. These studies were designed to assess whether TSC gene inactivation alters excitability.
    METHODS: We used visualized patch-clamp (human and mouse) and extracellular field (mouse) recordings. Additional mice were processed for immunohistochemistry or Western blot analysis.
    RESULTS: Detailed anatomic studies in brain tissue sections from synapsin-TSC1 conditional knock-out mice failed to uncover gross anatomic defects, loss of lamination, or frank tuber formation. However, regions of abnormal and potentially activated neocortex were shown using antibodies to nonphosphorylated neurofilaments (SMI-311) and immediate early genes (c-Fos). Extracellular recordings from neocortical slices, examining synaptic activity in these regions, demonstrated clear differences in excitability between conditional knock-out and age-matched control mice. Whole-cell patch-clamp recordings demonstrated excitatory synaptic currents with strikingly long duration and epileptiform discharge patterns, similar to waveforms observed in our human tissue samples. These events were 1-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor mediated and were most prominent in neocortex. Normal-appearing inhibitory postsynaptic currents (human) and intrinsic neuronal firing patterns (mouse) were also recorded.
    CONCLUSIONS: This combination of human and mouse tissue studies suggests, for the first time, that synaptic excitation is altered in a direction that favors seizure generation in TSC brain tissue regardless of cortical tubers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    This article reviews the key experiments demonstrating calcium-induced calcium release (CICR) in smooth muscle and contrasts the biophysical and molecular features of coupling between the sarcolemmal (L-type Ca(2+) channel) and sarcoplasmic reticulum (ryanodine receptor) Ca(2+) channels in smooth and cardiac muscle. Loose coupling refers to the coupling process in smooth muscle in which gating of ryanodine receptors is non-obligate and may occur with a variable delay following opening of the sarcolemmal Ca(2+) channels. These features have been observed in the earliest studies of CICR in smooth muscle and are in marked contrast to cardiac CICR, where a close coupling between T-tubular and SR membranes results in tight coupling between the gating events. The relationship between this \"loose coupling\" and distinct subcellular release sites within smooth muscle cells, termed frequent discharge sites, is discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号