Oceanography

海洋学
  • 文章类型: Journal Article
    BACKGROUND: Marine species can demonstrate strong genetic differentiation and population structure despite the hypothesis of open seas and high connectivity. Some suggested drivers causing the genetic breaks are oceanographic barriers and the species\' biology. We assessed the relevance of seven major oceanographic fronts on species connectivity while considering their dispersal capacity and life strategy.
    METHODS: We systematically reviewed the scientific articles reporting population genetic differentiation along the Mediterranean Sea and across the Atlantic-Mediterranean transition. We retained those considering at least one sampling locality at each side of an oceanographic front, and at least two localities with no-front between them to correctly assess the effect of the front. To estimate the impact of life history characteristics affecting connectivity we considered the planktonic larval duration (PLD) and adult life strategy.
    RESULTS: Oceanographic barriers in the Mediterranean Sea seem to reduce gene flow globally; however, this effect is not homogeneous considering the life history traits of the species. The effect of the oceanographic fronts reduces gene flow in highly mobile species with PLD larger than 2-4 weeks. Benthic sessile species and/or with short PLD (< 2 weeks) have more significant genetic breaks between localities than species with higher motility; however, genetic differentiation occurs independently of the presence of a front.
    CONCLUSIONS: Genetic connectivity is important for populations to recover from anthropogenic or natural impacts. We show that species with low mobility, mostly habitat-formers, have high genetic differentiation but low gene flow reduction mediated by the front, therefore, considering the importance of these species, we emphasize the vulnerability of the Mediterranean ecosystems and the necessity of protection strategies based on the whole ecosystem.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth\'s climate system, is taking up most of Earth\'s excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean\'s overturning circulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them.
    RESULTS: We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications.
    CONCLUSIONS: This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Bathymetry, the underwater topography, is a fundamental property of oceans, seas, and lakes. As such it is important for a wide range of applications, like physical oceanography, marine geology, geophysics and biology or the administration of marine resources. The exact requirements users may have regarding bathymetric data are, however, unclear. Here, the results of a questionnaire survey and a literature review are presented, concerning the use of Baltic Sea bathymetric data in research and for societal needs. It is demonstrated that there is a great need for detailed bathymetric data. Despite the abundance of high-quality bathymetric data that are produced for safety of navigation purposes, the digital bathymetric models publicly available to date cannot satisfy this need. Our study shows that DBMs based on data collected for safety of navigation could substantially improve the base data for administrative decision making as well as the possibilities for marine research in the Baltic Sea.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Monitoring of the marine environment has come to be a field of scientific interest in the last ten years. The instruments used in this work have ranged from small-scale sensor networks to complex observation systems. Among small-scale networks, Wireless Sensor Networks (WSNs) are a highly attractive solution in that they are easy to deploy, operate and dismantle and are relatively inexpensive. The aim of this paper is to identify, appraise, select and synthesize all high quality research evidence relevant to the use of WSNs in oceanographic monitoring. The literature is systematically reviewed to offer an overview of the present state of this field of study and identify the principal resources that have been used to implement networks of this kind. Finally, this article details the challenges and difficulties that have to be overcome if these networks are to be successfully deployed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The initial phase of a collaborative ambient monitoring program (AMP) for the Strait of Georgia (SoG) (Marine Environmental Research, in press.) has focused on the benthos, sedimentary regimes, organic and contaminant cycling in subtidal regions of the strait. As part of that project, we review the primarily subtidal benthic invertebrate faunal communities found in the SoG, with particular reference to habitats and sediment conditions. This topic has not been addressed in the primary literature for over 20 years. Benthic biota are the baseline sentinels of the influence of natural and anthropogenic inputs to sediments. They are also a fundamental component of the food chain at the seafloor, and their community ecology must be clearly understood in order to predict how anthropogenic activities and climate change will affect our coastal oceans. The purpose of this review is to provide context on habitats and biota in the SoG, and to highlight topics and geographic areas where our knowledge of the benthos is limited or lacking.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The Scotia Sea ecosystem is a major component of the circumpolar Southern Ocean system, where productivity and predator demand for prey are high. The eastward-flowing Antarctic Circumpolar Current (ACC) and waters from the Weddell-Scotia Confluence dominate the physics of the Scotia Sea, leading to a strong advective flow, intense eddy activity and mixing. There is also strong seasonality, manifest by the changing irradiance and sea ice cover, which leads to shorter summers in the south. Summer phytoplankton blooms, which at times can cover an area of more than 0.5 million km2, probably result from the mixing of micronutrients into surface waters through the flow of the ACC over the Scotia Arc. This production is consumed by a range of species including Antarctic krill, which are the major prey item of large seabird and marine mammal populations. The flow of the ACC is steered north by the Scotia Arc, pushing polar water to lower latitudes, carrying with it krill during spring and summer, which subsidize food webs around South Georgia and the northern Scotia Arc. There is also marked interannual variability in winter sea ice distribution and sea surface temperatures that is linked to southern hemisphere-scale climate processes such as the El Niño-Southern Oscillation. This variation affects regional primary and secondary production and influences biogeochemical cycles. It also affects krill population dynamics and dispersal, which in turn impacts higher trophic level predator foraging, breeding performance and population dynamics. The ecosystem has also been highly perturbed as a result of harvesting over the last two centuries and significant ecological changes have also occurred in response to rapid regional warming during the second half of the twentieth century. This combination of historical perturbation and rapid regional change highlights that the Scotia Sea ecosystem is likely to show significant change over the next two to three decades, which may result in major ecological shifts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Studies on the digenean parasites of deep-sea (> 200 m depth) teleosts are reviewed and two case study generic phylogenies are presented based on LSU rDNA and ND1 mtDNA sequences. The phylogeny of the lepocreadiid genus Lepidapedon, the most common deep-sea digenean genus, is not clearly resolved as the two gene trees are not compatible. It can be inferred, however, that the genus has radiated in the deeper waters off the continental shelf, mainly in fishes of the gadiform family Macrouridae. Steringophorus, a fellodistomid genus, is better resolved. In this case a deep-sea radiation is also indicated, but the pattern of host-specificity is not clear, with evidence of much host-switching. Results of studies of the parasites of the macrourid fish Coryphaenoides (Nematonurus) armatus from various depths have reinforced recent views on the lack of zoned depth-related communities in the deep-sea. The diversity of deep-sea digeneans is relatively low with only 18 families (of about 60) reported. Little, or nothing, is known from most deep-sea areas and nothing from trenches and mid-ocean ridge systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Historical Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号