Merlin

梅林
  • 文章类型: Journal Article
    OBJECTIVE Meningiomas express somatostatin receptor subtype 2 (SST2), which is targeted by the somatostatin analog octreotide. However, to date, using somatostatin analog therapy for the treatment of these tumors in clinical practice has been debated. This study aims to clarify the in vitro effects of octreotide on meningiomas for precise clinical applications. METHODS The effects of octreotide were analyzed in a large series of 80 meningiomas, including 31 World Health Organization (WHO) Grade II and 4 WHO Grade III tumors, using fresh primary cell cultures to study the impact on cell viability, apoptosis, and signal transduction pathways. RESULTS SST2 mRNA was detected in 100% of the tested meningiomas at levels similar to those observed in other SST2-expressing tumors, neuroendocrine tumors, or pituitary adenomas. Octreotide significantly decreased cell proliferation in 88% of meningiomas but did not induce cell death. On average, cell proliferation was more inhibited in the meningioma group expressing a high level of SST2 than in the low-SST2 group. Moreover, octreotide response was positively correlated to the level of merlin protein and inversely correlated to the level of phosphorylated p70-S6 kinase, a downstream effector of the PI3K/Akt/mammalian target of rapamycin (mTOR) pathway. Octreotide inhibited Akt phosphorylation and activated tyrosine phosphatase without impacting the extracellular regulated kinase (ERK) pathway. CONCLUSIONS Octreotide acts exclusively as an antiproliferative agent and does not promote apoptosis in meningioma in vitro. Therefore, in vivo, octreotide is likely to limit tumor growth rather than induce tumor shrinkage. A meta-analysis of the literature reveals an interest in octreotide for the treatment of WHO Grade I tumors, particularly those in the skull base for which the 6-month progression-free survival level reached 92%. Moreover, somatostatin analogs, which are well-tolerated drugs, could be of interest for use as co-targeting therapies for aggressive meningiomas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Clinical Trial, Phase I
    Focal adhesion kinase (FAK) is important in cancer growth, survival, invasion, and migration. The purpose of this study was to determine the maximum tolerated dose (MTD), safety, pharmacokinetics (PK), and pharmacodynamics (PD) of the FAK inhibitor, GSK2256098, in cancer patients.
    The dose of GSK2256098 was escalated, in cohorts of patients with advanced cancer, from 80 to 1500 mg, oral twice daily (BID), until the MTD was determined. Serial blood samples were obtained from all patients, and the PK was determined. Paired tumor biopsies were obtained in select patients, and the level of phospho-FAK (pFAK) was determined.
    Sixty-two patients (39 males, 23 females; median age 61 y.o., range 21-84) received GSK2256098. Dose-limiting toxicities of grade 2 proteinuria (1000 mg BID), grade 2 fatigue, nausea, vomiting (1250 mg BID), and grade 3 asthenia and grade 2 fatigue (1500 mg BID) were reported with the MTD identified as 1000 mg BID. The most frequent adverse events (AEs) were nausea (76%), diarrhea (65%), vomiting (58%), and decreased appetite (47%) with the majority of AEs being grades 1-2. The PK was generally dose proportional with a geometric mean elimination half-life range of 4-9 h. At the 750, 1000, and 1500 mg BID dose levels evaluated, the pFAK, Y397 autophosphorylation site, was reduced by ∼80% from baseline. Minor responses were observed in a patient with melanoma (-26%) and three patients with mesothelioma (-13%, -15%, and -17%). In the 29 patients with recurrent mesothelioma, the median progression-free survival was 12 weeks with 95% CI 9.1, 23.4 weeks (23.4 weeks merlin negative, n = 14; 11.4 weeks merlin positive, n = 9; 10.9 weeks merlin status unknown, n = 6).
    GSK2256098 has an acceptable safety profile, has evidence of target engagement at doses at or below the MTD, and has clinical activity in patients with mesothelioma, particularly those with merlin loss.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    肿瘤抑制蛋白Merlin在建立细胞-细胞接触时抑制细胞增殖。由于Merlin与Ezrin-Radixin-Moesin蛋白家族具有高度的序列相似性,Ezrin-Radixin-Moesin蛋白自动抑制的结构模型以及在封闭/静息和开放/活性构象状态之间的循环通常用于解释Merlin功能。然而,最近的生化研究提出了Merlin功能的替代分子模型。这里,我们已经使用小角度中子散射和结合实验确定了Merlin和Merlin(S518D)突变体的低分辨率分子结构和结合活性,该突变体模拟了S518的失活磷酸化。小角度中子散射表明,在解决方案中,梅林和梅林(S518D)都采用封闭构象,但是结合实验表明,Merlin或Merlin(S518D)的很大一部分能够与靶蛋白NHERF1结合。与磷脂酰肌醇4,5-双磷酸酯脂质结合后,野生型Merlin采用比溶液更开放的构象,但梅林(S518D)仍处于封闭构象。这项研究支持Merlin在NHERF1结合中的变阻器模型,并有助于解决有关Merlin分子构象和结合活性的争议。
    The tumor suppressor protein Merlin inhibits cell proliferation upon establishing cell-cell contacts. Because Merlin has high level of sequence similarity to the Ezrin-Radixin-Moesin family of proteins, the structural model of Ezrin-Radixin-Moesin protein autoinhibition and cycling between closed/resting and open/active conformational states is often employed to explain Merlin function. However, recent biochemical studies suggest alternative molecular models of Merlin function. Here, we have determined the low-resolution molecular structure and binding activity of Merlin and a Merlin(S518D) mutant that mimics the inactivating phosphorylation at S518 using small-angle neutron scattering and binding experiments. Small-angle neutron scattering shows that, in solution, both Merlin and Merlin(S518D) adopt a closed conformation, but binding experiments indicate that a significant fraction of either Merlin or Merlin(S518D) is capable of binding to the target protein NHERF1. Upon binding to the phosphatidylinositol 4,5-bisphosphate lipid, the wild-type Merlin adopts a more open conformation than in solution, but Merlin(S518D) remains in a closed conformation. This study supports a rheostat model of Merlin in NHERF1 binding and contributes to resolving a controversy about the molecular conformation and binding activity of Merlin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号