Matricellular proteins

基质细胞蛋白
  • 文章类型: Journal Article
    细胞外基质蛋白通过多功能机制在骨骼和牙齿等矿化组织的形成中起着至关重要的作用。在牙釉质中,成釉细胞蛋白(Ambn)是一种涉及细胞信号传导和极性的多功能细胞外基质蛋白,细胞粘附在发育中的釉质基质上,棱柱形釉质形态的稳定。为Ambn的结构和功能提供视角,我们从描述牙釉质和牙釉质形成(牙釉质发生)开始这篇综述,然后描述牙釉质细胞外基质。然后,我们总结了Ambn蛋白中已建立的结构域和基序,人类釉质发生不全症病例,和涉及突变或无效Ambn的基因工程小鼠模型。我们随后在计算机上描绘,在体外,以及Ambn中两亲性螺旋作为拟议的细胞-基质粘合剂的体内证据,然后是多靶向域作为Ambn与自身动态相互作用的基础的最新体外证据,釉原蛋白,和膜。多靶向结构域促进Ambn-膜相互作用和自/共组装之间的调节,并且支持Ambn作为基质细胞蛋白的可能的总体作用。我们预计,这篇综述将通过巩固Ambn有助于釉质细胞外基质矿化的多种机制来增强对多功能基质蛋白的理解。
    Extracellular matrix proteins play crucial roles in the formation of mineralized tissues like bone and teeth via multifunctional mechanisms. In tooth enamel, ameloblastin (Ambn) is one such multifunctional extracellular matrix protein implicated in cell signaling and polarity, cell adhesion to the developing enamel matrix, and stabilization of prismatic enamel morphology. To provide a perspective for Ambn structure and function, we begin this review by describing dental enamel and enamel formation (amelogenesis) followed by a description of enamel extracellular matrix. We then summarize the established domains and motifs in Ambn protein, human amelogenesis imperfecta cases, and genetically engineered mouse models involving mutated or null Ambn. We subsequently delineate in silico, in vitro, and in vivo evidence for the amphipathic helix in Ambn as a proposed cell-matrix adhesive and then more recent in vitro evidence for the multitargeting domain as the basis for dynamic interactions of Ambn with itself, amelogenin, and membranes. The multitargeting domain facilitates tuning between Ambn-membrane interactions and self/co-assembly and supports a likely overall role for Ambn as a matricellular protein. We anticipate that this review will enhance the understanding of multifunctional matrix proteins by consolidating diverse mechanisms through which Ambn contributes to enamel extracellular matrix mineralization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Malignancies consist not only of cancerous and nonmalignant cells, but also of additional elements, as extracellular matrix. The aim of this review is to summarize meta-analyses, describing breast tissue stiffness and risk of breast carcinoma (BC) assessing the potential relationship between matricellular proteins (MPs) and survival. A systematic computer-based search of published articles, according to PRISMA statement, was conducted through Ovid interface. Mammographic density and tissue stiffness are associated with the risk of BC development, suggesting that MPs may influence BC prognosis. No definitive conclusions are available and additional researches are required to definitively clarify the role of each MP, mammographic density and stiffness in BC development and the mechanisms involved in the onset of this malignancy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Extracellular matrix (ECM) plays a fundamental role in tissue architecture and homeostasis and modulates cell functions through a complex interaction between cell surface receptors, hormones, several bioeffector molecules, and structural proteins like collagen. These components are secreted into ECM and all together contribute to regulate several cellular activities including differentiation, apoptosis, proliferation, and migration. The so-called \"matricellular\" proteins (MPs) have recently emerged as important regulators of ECM functions. The aim of our review is to consider all different types of MPs family assessing the potential relationship between MPs and survival in patients with pancreatic ductal adenocarcinoma (PDAC). A systematic computer-based search of published articles, according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) Statement issued in 2009 was conducted through Ovid interface, and literature review was performed in May 2017. The search text words were identified by means of controlled vocabulary, such as the National Library of Medicine\'s MESH (Medical Subject Headings) and Keywords. Collected data showed an important role of MPs in carcinogenesis and in PDAC prognosis even though the underlying mechanisms are still largely unknown and data are not univocal. Therefore, a better understanding of MPs role in regulation of ECM homeostasis and remodeling of specific organ niches may suggest potential novel extracellular targets for the development of efficacious therapeutic strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号