Intramolecular Lyases

分子内裂解酶
  • 文章类型: Journal Article
    The lactonization process of Cl-cis,cis-muconate catalyzed by anti-muconate lactonizing enzyme (anti-MLE) was studied theoretically with the aid of a combined quantum mechanics/molecular mechanics (QM/MM) approach. Two elementary processes steps involved in the lactanization process were investigated. The calculated energy barriers agree well with the experimental values. The present work provided the explicit structures of the enolate anion intermediates. The electrostatic influence analysis highlighted residues Arg51, Gln294 and TIP383 for the MLE-Cl-2 system and the residue Asn193 for the MLE-Cl-4 system as the possible mutation targets for rational design of anti-MLE in future enzyme modification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcones into flavonoids. The activity of CHI is essential for the biosynthesis of flavonoids precursors of floral pigments and phenylpropanoid plant defense compounds. In the present study, we explored the detailed binding structures and binding free energies for two different active site conformations of CHI with s-cis/s-trans conformers of three chalcone compounds by performing molecular dynamics (MD) simulations and binding free energy calculations. The computational results indicate that s-cis/s-trans conformers of chalcone compounds are orientated in the similar binding position in the active site of CHI and stabilized by the different first hydrogen bond network and the same second hydrogen bond network. The first hydrogen bond network results in much lower binding affinity of s-trans conformer of chalcone compound with CHI than that of s-cis conformer. The conformational change of the active site residue T48 from indirectly interacting with the substrate via the second hydrogen bond network to directly forming the hydrogen bond with the substrates cannot affect the binding mode of both conformers of chalcone compounds, but remarkably improves the binding affinity. These results show that CHI has a strong stereoselectivity. The calculated binding free energies for three chalcone compounds with CHI are consistent with the experimental activity data. In addition, several valuable insights are suggested for future rational design and discovery of high-efficiency mutants of CHI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Interspecific gene flow is common in oaks. In the Mediterranean, this process produced geographical differentiations and new species, which may have contributed to the diversification of the production of volatile terpenes in the oak species of this region. The endemic North African deciduous oak Quercus afares (Pomel) is considered to be a stabilized hybrid between the evergreen Quercus suber (L.) and the deciduous Quercus canariensis (Willd.), presumably being monoterpene and isoprene emitters, respectively. In a common garden experiment, we examined the terpene emission capacities, terpene synthase (TPS) activities and nuclear genetic markers in 52 trees of these three oak species. All but one of the Q. suber and Q. canariensis trees were found to be genetically pure, whereas most Q. afares trees possessed a mixed genotype with a predominance of Q. suber alleles. Analysis of the foliar terpene emissions and TPS activities revealed that all the Q. canariensis trees strongly produced isoprene while all the Q. suber trees were strong monoterpene producers. Quercus afares trees produced monoterpenes as well but at more variable and significantly lower rates, and with a monoterpene pattern different than that observed in Q. suber. Among 17 individuals tested, one Q. afares tree emitted only an insignificant amount of terpenes. No mixed isoprene/monoterpene emitter was detected. Our results suggest that the capacity and pattern of volatile terpene production in Algerian Q. afares populations have strongly diverged from those of its parental species and became quantitatively and qualitatively reduced, including the complete suppression of isoprene production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    MLEs derived from mycobacterium smegmatis and seudomonas fluorescens share ∼76% identity and have a very similar arrangement of catalytic residues in their active site configuration. However, while they catalyze the conversion of cis,cis-muconate to the same achiral product, muconolactone, studies in deuterated solvent surprisingly show that the cyclo-isomerization proceeds with the formation of a chiral product. In this paper we discuss the application of DFT QM/MM calculations on both MLEs, to our knowledge the first reported in the literature on this protein. We investigate the proposal that the base involved in the catalytic reaction is the lysine residue found at the end of the 2(nd) strand given: (a) that the lysine residue at the end of the 6(th) strand is in an apparently equally effective position to catalyze reaction and (b) that the structural related epimerase in-fact achieve their stereo-specific outcomes by relying on either the base from the 2(nd) or 6(th) strand.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号