Hippocampal formation

海马形成
  • 文章类型: Journal Article
    关于围产期海马结构(HF)的磁共振成像(MRI)测定的信息很少。然而,这种探索被越来越多地使用,这需要在MRI图像上定义可见的HF标志,通过组织学分析验证。这项研究旨在提供一种协议,以识别MRI图像上的HF标志,然后通过检查样本颞叶的连续切片进行组织学验证,评估围产期海马的纵向范围。我们检查了来自9个婴儿对照脑样本的离体MRI图像。通过沿海马结构的整个长度以250μm的间隔对Nissl染色的切片进行连续切片和检查,获得了海马结构MRI图像的组织学验证。在MRI图像和连续组织学切片中最多识别出六个标志。在前向后(rostrocautal)方向进行,这些如下:1)利蒙岛叶(额-颞部);2)杏仁核复合体的开始;3)侧脑室的开始;4)索的尾部界限,由外侧膝状核的开始(在回的水平处)指示;5)外侧膝状核的末端(髓核的开始);和6)穹窿的开始。在对每个地标进行组织学验证后,计算海马结构的整个纵向长度和标志之间的距离。总长度或地标之间未发现统计学上的显着差异。虽然HF在出生时是解剖学组织的,它的注释执行起来特别具有挑战性。HF标志的组织学验证可以更好地理解MRI图像。所提出的方案可用于评估儿童的MRI海马定量以及由于不同神经系统疾病而引起的可能变化。
    Little information is available on the magnetic resonance imaging (MRI) determination of the hippocampal formation (HF) during the perinatal period. However, this exploration is increasingly used, which requires defining visible HF landmarks on MRI images, validated through histological analysis. This study aims to provide a protocol to identify HF landmarks on MRI images, followed by histological validation through serial sections of the temporal lobe of the samples examined, to assess the longitudinal extent of the hippocampus during the perinatal period. We examined ex vivo MRI images from nine infant control brain samples. Histological validation of the hippocampal formation MRI images was obtained through serial sectioning and examination of Nissl-stained sections at 250 μm intervals along the entire length of the hippocampal formation. Up to six landmarks were identified both in MRI images and the serial histological sections. Proceeding in an anterior to posterior (rostrocaudal) direction, these were as follows: 1) the limen insulae (fronto-temporal junction); 2) the beginning of the amygdaloid complex; 3) the beginning of the lateral ventricle; 4) the caudal limit of the uncus, indicated by the start of the lateral geniculate nucleus (at the level of the gyrus intralimbicus); 5) the end of the lateral geniculate nucleus (beginning of the pulvinar); and 6) the beginning of the fornix. After histological validation of each of these landmarks, the full longitudinal length of the hippocampal formation and distances between landmarks were calculated. No statistically significant differences were found in total length or between landmarks. While the HF is anatomically organized at birth, its annotation is particularly challenging to perform. The histological validation of HF landmarks allows a better understanding of MRI images. The proposed protocol could be useful to assess MRI hippocampal quantification in children and possible variations due to different neurological diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The entorhinal cortex is the main gateway for interactions between the neocortex and the hippocampus. Distinct regions, layers, and cells of the hippocampal formation exhibit different profiles of structural and molecular maturation during postnatal development. Here, we provide estimates of neuron number, neuronal soma size, and volume of the different layers and subdivisions of the monkey entorhinal cortex (Eo, Er, Elr, Ei, Elc, Ec, Ecl) during postnatal development. We found different developmental changes in neuronal soma size and volume of distinct layers in different subdivisions, but no changes in neuron number. Layers I and II developed early in most subdivisions. Layer III exhibited early maturation in Ec and Ecl, a two-step/early maturation in Ei and a late maturation in Er. Layers V and VI exhibited an early maturation in Ec and Ecl, a two-step and early maturation in Ei, and a late maturation in Er. Neuronal soma size increased transiently at 6 months of age and decreased thereafter to reach adult size, except in Layer II of Ei, and Layers II and III of Ec and Ecl. These findings support the theory that different hippocampal circuits exhibit distinct developmental profiles, which may subserve the emergence of different hippocampus-dependent memory processes. We discuss how the early maturation of the caudal entorhinal cortex may contribute to path integration and basic allocentric spatial processing, whereas the late maturation of the rostral entorhinal cortex may contribute to the increased precision of allocentric spatial representations and the temporal integration of individual items into episodic memories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Since the first identification of fullerenes (C60) and their synthesis in 1985, those compounds have been extensively studied in the biomedical field. In particular, their water-soluble derivatives, fullerenols (C60(OH)n, n = 2-48), have recently been the subject of numerous investigations concerning their antioxidant and prooxidant properties in biological systems. A small fraction of that research has focused on the possible use of C60 and C60(OH)n in neuroscience and the therapy of pathologies such as dementia, amyloid-β (Aβ) formation, and Parkinson\'s disease. However, only a few studies have focused on their direct effects on neuronal network viability and excitability, especially with the use of electrophysiological and electrochemical approaches. Therefore, we addressed the issue of the direct effect of hydroxylated fullerene nanoparticles C60(OH)36 on local field potentials at the hippocampal formation (HPC) level. With the use of in vitro hippocampal formation slices as a stable model of inducing theta oscillations, and an in vivo model of an anesthetized rat, herein we provide the first convergent electropharmacological evidence that C60(OH)36 at relatively high concentrations (60 μM and 80 μM in vitro; 0.2 μg/μl in vivo) is capable of attenuating the amplitude, power, and frequency of theta oscillations in the HPC neuronal network. At the same time, lower concentrations did not induce any apparent changes. Theta band oscillations constitute a key physiological phenotypic property, which served here as a sensitive assay enabling the study of neural network excitability. Moreover, we report that C60(OH)36 at the concentrations of 60 μM and 80 μM is capable of producing epilepsy in the HPC in vitro, which suggests that C60(OH)n, when applied at higher doses, may have a deleterious effect on the functioning of neuronal networks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The main purpose of this study was the determination and comparison of anomalies in creatine (Cr) accumulation occurring within CA3 and DG areas of hippocampal formation as a result of two high-fat, carbohydrate-restricted ketogenic diets (KD) with different ketogenic ratio (KR). To reach this goal, Fourier transformed infrared microspectroscopy with synchrotron radiation source (SRFTIR microspectroscopy) was applied for chemical mapping of creatine absorption bands, occurring around 1304, 1398 and 2800 cm-1. The samples were taken from three groups of experimental animals: control group (N) fed with standard laboratory diet, KD1 and KD2 groups fed with high-fat diets with KR 5:1 and 9:1 respectively. Additionally, the possible influence on the phosphocreatine (PhCr, the high energetic form of creatine) content was evaluated by comparative analysis of chemical maps obtained for creatine and for compounds containing phosphate groups which manifest in the spectra at the wavenumbers of around 1240 and 1080 cm-1. Our results showed that KD2 strongly modifies the frequency of Cr inclusions in both analyzed hippocampal areas. Statistical analysis, performed with Mann-Whitney U test revealed increased accumulation of Cr within CA3 and DG areas of KD2 fed rats compared to both normal rats and KD1 experimental group. Moreover, KD2 diet may modify the frequency of PhCr deposits as well as the PhCr to Cr ratio.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The main purpose of the following study was the determination of elemental changes occurring within hippocampal formation as a result of high-fat and carbohydrate-restricted ketogenic diet (KD). To realize it, X-ray fluorescence microscopy was applied for topographic and quantitative analysis of P, S, K, Ca, Fe, Cu, Zn and Se in hippocampal formations taken from rats fed with two different KDs and naive controls. The detailed comparisons were done for sectors 1 and 3 of the Ammon\'s, the dentate gyrus and hilus of dentate gyrus. The results of elemental analysis showed that the KDs induced statistically significant changes in the accumulation of P, K, Ca, Zn and Se in particular areas of hippocampal formation and these alterations strongly depended on the composition of the diets. Much greater influence on the hippocampal areal densities of examined elements was found for the KD which was characterized by a lower content of carbohydrates, higher content of fats and increased proportion of unsaturated fatty acids. The levels of P, K and Zn decreased whilst those of Ca and Se increased as a result of the treatment with the KDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: Genome-wide association studies have identified the CACNA1C single nucleotide polymorphism (SNP) rs1006737 as one of the most consistent genetic findings as susceptibility locus for major psychiatric disorders. Furthermore, animal and genetic imaging studies have reported strong functional evidence for the association of CACNA1C with learning, memory, neural plasticity, and its association with the hippocampal formation. In the present study we investigated the impact of the CACNA1C SNP rs1006737 on the fractional anisotropy (FA) in the hippocampal formation as well as on verbal learning and memory in healthy individuals.
    METHODS: 118 healthy individuals (72 males, 46 females, age 18-56years) initially underwent diffusion tensor imaging (DTI), 100 of them were included in the final analysis. We used Tract-Based Spatial Statistics (TBSS) to examine the impact of the CACNA1C SNP rs1006737 on the hippocampal formation as predefined region of interest (ROI). Furthermore, all participants completed the Verbal Learning and Memory Test (VLMT).
    RESULTS: In the VLMT genotype was significantly associated with learning performance. Bonferroni corrected post-hoc tests indicated a diminished performance at the beginning of the learning curve in risk allele carriers compared to non-risk allele carriers. The TBSS ROI analysis revealed one cluster of reduced FA in risk allele carriers compared to non-risk allele carriers located in the right hippocampal formation. Moreover, an association between the initial learning performance and FA values was found.
    CONCLUSIONS: These findings demonstrate that genetic variation in the CACNA1C SNP rs1006737 is associated with FA reduction in the hippocampal formation as well as with differences in learning performance in healthy individuals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号