Förster resonance energy transfer (FRET)

F ö rster 共振能量转移 ( FRET )
  • 文章类型: Journal Article
    Förster共振能量转移(FRET)光谱法是一种用于从FRET效率的分布确定蛋白质寡聚体的四级结构的方法,该FRET效率的分布是从表达目标蛋白质的细胞的荧光图像的像素中提取的。FRET光谱法方案目前依赖于从基于强度的实验获得光谱分辨的荧光数据。另一种成像方法,荧光寿命成像显微镜(FLIM),是从由FRET引起的供体的荧光寿命的减少来计算图像中的每个像素的FRET效率的广泛使用的替代方案。在具有不同比例的供体和受体的寡聚体的FLIM研究中,供体寿命可以通过将时间分辨的荧光衰减数据与预定数量的指数衰减曲线进行拟合来获得。然而,这需要了解样品中荧光蛋白的数量和相对排列,这正是FRET光谱法的目标,因此产生了一个难题,该难题阻止了FLIM仪器的用户执行FRET光谱法。这里,我们描述了通过使用基于积分的方法从荧光衰减曲线计算FRET效率,在时间分辨荧光显微镜上实现FRET光谱法的尝试。这种方法,我们称之为时间集成FRET(或tiFRET),在活细胞的细胞质中表达的寡聚荧光蛋白构建体进行测试。目前的结果表明,tiFRET是实现FRET光谱法的一种有前途的方法,并建议对仪器进行潜在的调整,以提高此类研究的准确性和分辨率。
    Förster resonance energy transfer (FRET) spectrometry is a method for determining the quaternary structure of protein oligomers from distributions of FRET efficiencies that are drawn from pixels of fluorescence images of cells expressing the proteins of interest. FRET spectrometry protocols currently rely on obtaining spectrally resolved fluorescence data from intensity-based experiments. Another imaging method, fluorescence lifetime imaging microscopy (FLIM), is a widely used alternative to compute FRET efficiencies for each pixel in an image from the reduction of the fluorescence lifetime of the donors caused by FRET. In FLIM studies of oligomers with different proportions of donors and acceptors, the donor lifetimes may be obtained by fitting the temporally resolved fluorescence decay data with a predetermined number of exponential decay curves. However, this requires knowledge of the number and the relative arrangement of the fluorescent proteins in the sample, which is precisely the goal of FRET spectrometry, thus creating a conundrum that has prevented users of FLIM instruments from performing FRET spectrometry. Here, we describe an attempt to implement FRET spectrometry on temporally resolved fluorescence microscopes by using an integration-based method of computing the FRET efficiency from fluorescence decay curves. This method, which we dubbed time-integrated FRET (or tiFRET), was tested on oligomeric fluorescent protein constructs expressed in the cytoplasm of living cells. The present results show that tiFRET is a promising way of implementing FRET spectrometry and suggest potential instrument adjustments for increasing accuracy and resolution in this kind of study.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多生物分子缩合物,包括核仁和应力颗粒,通过动态多价蛋白质-蛋白质和蛋白质-RNA相互作用形成。这些分子相互作用使液-液相分离(LLPS)成核并确定冷凝物的性质,如尺寸和流动性。这里,我们概述了单分子荧光实验的实验程序,以探测LLPS基础的蛋白质-RNA相互作用。实验包括单分子Förster(荧光)共振能量转移(smFRET),以监测蛋白质诱导的RNA构象变化,蛋白质诱导的荧光增强(PIFE)来测量蛋白质-RNA相遇,和单分子成核实验来量化蛋白质在成核RNA上的结合和积累。一起,这些实验提供了互补的方法来阐明驱动核糖核蛋白缩合物形成的蛋白质-RNA相互作用的分子观点。
    Many biomolecular condensates, including nucleoli and stress granules, form via dynamic multivalent protein-protein and protein-RNA interactions. These molecular interactions nucleate liquid-liquid phase separation (LLPS) and determine condensate properties, such as size and fluidity. Here, we outline the experimental procedures for single-molecule fluorescence experiments to probe protein-RNA interactions underlying LLPS. The experiments include single-molecule Förster (Fluorescence) resonance energy transfer (smFRET) to monitor protein-induced conformational changes in the RNA, protein-induced fluorescence enhancement (PIFE) to measure protein-RNA encounters, and single-molecule nucleation experiments to quantify the association and buildup of proteins on a nucleating RNA. Together, these experiments provide complementary approaches to elucidate a molecular view of the protein-RNA interactions that drive ribonucleoprotein condensate formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单分子荧光和核磁共振波谱(NMR)是用于分析固有无序蛋白质(IDP)的两种非常强大的技术。这两种技术都为破译国内流离失所者及其相互作用的复杂特性做出了重大贡献,很明显,它们可以为IDP系统的距离-动力学关系提供非常互补的观点。现在,我们回顾了使用NMR和单分子荧光来破译IDPs分子特性及其相互作用的第一种方法。我们揭示了这两种技术如何协同地用于具有内在无序接头的多域蛋白质,对于名副其实的国内流离失所者,还用于液-液相分离系统。此外,我们提供了使用单分子Förster共振能量转移(FRET)和NMR描述IDP多构象模型的第一种方法的见解。
    Single molecule fluorescence and nuclear magnetic resonance spectroscopy (NMR) are two very powerful techniques for the analysis of intrinsically disordered proteins (IDPs). Both techniques have individually made major contributions to deciphering the complex properties of IDPs and their interactions, and it has become evident that they can provide very complementary views on the distance-dynamics relationships of IDP systems. We now review the first approaches using both NMR and single molecule fluorescence to decipher the molecular properties of IDPs and their interactions. We shed light on how these two techniques were employed synergistically for multidomain proteins harboring intrinsically disordered linkers, for veritable IDPs, but also for liquid-liquid phase separated systems. Additionally, we provide insights into the first approaches to use single molecule Förster resonance energy transfer (FRET) and NMR for the description of multiconformational models of IDPs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    To identify the translocation components in cells, and to understand how they function in protein transport and membrane insertion, a variety of techniques have been used such as genetics, biochemistry, structural biology and single molecule methods. In particular, site-directed crosslinking between the client proteins and components of the translocation machineries have contributed significantly in the past and will do so in the future. One advantage of this technology is that it can be applied in vivo as well as in vitro and a comparison of the two approaches can be made. Also, the in vivo techniques allow time-dependent protocols which are essential for studying cellular pathways. Protein purification and reconstitution into proteoliposomes are the gold standard for studying membrane-based transport and translocation systems. With these biochemically defined approaches the function of each component in protein transport can be addressed individually with a plethora of biophysical techniques. Recently, the use of nanodiscs for reconstitution has added another extension of this reductionistic approach. Fluorescence based studies, cryo-microscopy and NMR spectroscopy have significantly added to our understanding how proteins move into and across membranes and will do this also in future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号