Chondrogenic differentiation

软骨分化
  • 文章类型: Journal Article
    OBJECTIVE: Adipose tissue-derived stem cells (ASCs) are a promising source of cells for articular cartilage regeneration. However, ASCs isolated from different adipose tissue depots have heterogeneous cell characterizations and differentiation potential when cultured in 3-dimensional (3D) niches.
    METHODS: We compared the chondrogenicity of ASCs isolated from infrapatellar fat pads (IPFPs) and subcutaneous fat pads (SCFPs) in 3D gelatin-based biomimetic matrix.
    RESULTS: The IPFP-ASC-differentiated chondrocytes had higher ACAN, COL2A1, COL10, SOX6, SOX9, ChM-1, and MIA-3 mRNA levels and lower COL1A1 and VEGF levels than the SCFP-ASCs in 3D matrix. The difference in mRNA profile may have contributed to activation of the Akt, p38, RhoA, and JNK signaling pathways in the IPFP-ASCs. The chondrocytes differentiated from IPFP-ASCs had pronounced glycosaminoglycan and collagen type II production and a high chondroitin-6-sulfate/chondroitin-4-sulfate ratio with less polymerization of β-actin filaments. In an ex vivo mice model, magnetic resonance imaging revealed a shorter T2 relaxation time, indicating that more abundant extracellular matrix was secreted in the IPFP-ASC-matrix group. Histological examinations revealed that the IPFP-ASC matrix had higher chondrogenic efficacy of new cartilaginous tissue generation as evident in collagen type II and S-100 staining. Conclusion. ASCs isolated from IPFPs may be better candidates for cartilage regeneration, highlighting the translational potential of cartilage tissue engineering using the IPFP-ASC matrix technique.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    牛心包膜已被提议作为组织工程和生物假体重建的可用材料。在这项研究中,将牛心包制成支架,用于培养人脂肪干细胞(hADSC)和软骨分化。牛心包在10mMTris-HCl和0.15%SDS中处理,然后在0.1%戊二醛中交联。处理过的牛心包膜(tBP)的特征是微黄的薄膜,具有增强的拉伸强度和应变性能。膜在酶促条件下维持稳定性长达16天的孵育。结果证实,由于低细胞毒性和其支持hADSC的适当附着和增殖的能力,tBP作为hADSC的细胞友好支架。此外,在软骨形成诱导7天和14天后,在接种hADSC的tBP中存在细胞外基质蛋白聚糖的积累。7天后检测到COMP作为软骨形成的特异性标志物,而X-a1型胶原(Col10a1)表达稳定至第14天。然而,发现了aggrecan的次要表达。一起来看,这些结果表明tBP是hADSCs用于软骨组织工程的潜在支架。关键词:牛心包,脚手架,脂肪干细胞,软骨分化,软骨再生,隆鼻.
    Bovine pericardium has been proposed as an available material for tissue engineering and bioprosthetic reconstruction. In this study, bovine pericardium was fabricated into a scaffold for culturing and chondrogenic differentiation of human adipose-derived stem cells (hADSCs). Bovine pericardium was treated in 10 mM Tris-HCl and 0.15% SDS, followed by crosslinking in 0.1% glutaraldehyde. Treated bovine pericardium (tBP) was characterized as a slight yellowish thin membrane with enhanced tensile strength and strain property. The membrane maintained stability under enzymatic conditions for up to 16 days of incubation. The results confirmed tBP as a cell-friendly scaffold for hADSCs due to low cytotoxicity and its ability to support an appropriate attachment and proliferation of hADSCs. Moreover, there was an accumulation of the extracellular matrix proteoglycan in tBP seeded with hADSCs after 7 and 14 days of chondrogenic induction. COMP as a specific marker of chondrogenesis was detected after 7 days, whereas type X-a1 collagen (Col10a1) expression was stable up to day 14. However, minor expression of aggrecan was found. Taken together, these results indicate that tBP is a potential scaffold for hADSCs for cartilage tissue engineering.Key words: Bovine pericardium, scaffold, adipose-derived stem cells, chondrogenic differentiation, cartilage regeneration, augmentation rhinoplasty.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Microfluidic devices are beneficial in miniaturizing and multiplexing various cellular assays in a single platform. Chondrogenesis is known to pertain to chemical, topographical, and mechanical cues in the microenvironment. Mechanical cues themselves have numerous parameters such as strain magnitude, frequency, and stimulation time. Effects of different strain magnitudes on the chondrogenic differentiation of adult stem cells have not been explored thoroughly. Here, a new multilayer microdevice is presented for the unidirectional compressive stimulation of cells in a three-dimensional cell culture. Numerical simulations were performed to evaluate and optimize the design. Results showed a favorable highly uniform axial strain distribution and negligible radial and circumferential strain for the optimized design. Moreover, an experimental study was performed on rabbit adipose-derived stem cells encapsulated in-situ in alginate hydrogel. Strain levels of 20%, 15%, 10%, 5%, and 0% were studied simultaneously on a microfluidic platform. Dynamic mechanical compression positively influenced cellular viability and upregulated collagen II, Sox-9, and aggrecan expression in the absence of exogenous growth factors. The expression of collagen type II as specific marker for articular chondrocytes was further confirmed by immunofluorescence staining of collagen type II. Taking together, 10% strain can be considered as optimal stimulation factor for chondrogenic differentiation of adipose derived stem cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    Fetal-derived mesenchymal stem cells especially human umbilical cord matrix mesenchymal stem cells (hUCMSCs), with their ease of availability, pluripotency, and high expansion potential have emerged as an alternative solution for stem cell based cartilage therapies. An attempt to elucidate the effect of dynamic mechanical compression in modulating the chondrogenic differentiation of hUCMSCs is done in this study to add on to the knowledge of optimizing chondrogenic signals necessary for the effective differentiation of these stem cells and subsequent integration to the surrounding tissues. hUCMSCs were seeded in porous poly (vinyl alcohol)-poly (caprolactone) (PVA-PCL) scaffolds and cultured in chondrogenic medium with/without TGF-β3 and were subjected to a dynamic compression of 10% strain, 1 Hz for 1/4 h for 7 days. The results on various analysis shows that the extent of dynamic compression is an important factor affecting cell viability. Mechanical stimulation in the form of dynamic compression stimulates expression of chondrogenic genes even in the absence of chondrogenic growth factors and also augments growth factor induced chondrogenic potential of hUCMSC. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2554-2566, 2016.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Adipose-derived mesenchymal stromal cells are promising as a regenerative therapy tool for defective tissues in mesenchymal lineage, including fat, bone, cartilage, and blood vessels. In potential future clinical applications, adipose-derived stem cell cryopreservation is an essential fundamental technology. The aim of this study is to define an adequate protocol for the cryopreservation of adipose-derived mesenchymal stromal cells, by comparing various protocols so as to determine the effects of cryopreservation on viability and chondrogenic differentiation potential of adipose-derived stem cells upon freeze-thawing of AT-MSCs colonies cryopreserved with standard and modified protocols, using flow cytometry and confocal microscopy. The study concludes that adipose-derived mesenchymal stromal cells could be long-term cryopreserved without any loss of their proliferative or differentiation potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The study results of in vitro formation of tissue-engineered cartilage construct on the basis of cell-engineered construct composed of biopolymer hydrogel matrix and human adipose tissue-derived mesenchymal stromal cells (hADSCs) are presented. It was revealed that hADSCs in biopolymer hydrogel matrix Sphero®GEL under chondrogenic conditions generate three-dimensional structures and produce cartilaginous extracellular matrix components: collagen type II and glycosaminoglycans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号