Cell Transdifferentiation

细胞转分化
  • 文章类型: Journal Article
    在开发的第一周,人类胚胎形成由内部细胞团和滋养外胚层(TE)细胞组成的胚泡,后者是胎盘滋养层的祖细胞。这里,我们研究了从胚泡早期到晚期的人TE中转录本的表达。我们鉴定了转录因子GATA2,GATA3,TFAP2C和KLF5的富集,并表征了它们在TE发育过程中的蛋白质表达动力学。通过诱导型过表达和mRNA转染,我们确定这些因素,和MYC一起,足以从引发的人胚胎干细胞建立诱导的滋养层干细胞(iTSC)。这些iTSCs自我更新并概括了形态学特征,基因表达谱,和定向分化潜力,与现有的人类TSC相似。每个系统的遗漏,或多种因素的组合,揭示了GATA2和GATA3对iTSC转分化的重要性。总之,这些发现提供了对可能在人类TE中起作用的转录因子网络的见解,并拓宽了建立早期人类胎盘祖细胞细胞模型的方法,这可能在未来对胎盘相关疾病的模型是有用的。
    During the first week of development, human embryos form a blastocyst composed of an inner cell mass and trophectoderm (TE) cells, the latter of which are progenitors of placental trophoblast. Here, we investigated the expression of transcripts in the human TE from early to late blastocyst stages. We identified enrichment of the transcription factors GATA2, GATA3, TFAP2C and KLF5 and characterised their protein expression dynamics across TE development. By inducible overexpression and mRNA transfection, we determined that these factors, together with MYC, are sufficient to establish induced trophoblast stem cells (iTSCs) from primed human embryonic stem cells. These iTSCs self-renew and recapitulate morphological characteristics, gene expression profiles, and directed differentiation potential, similar to existing human TSCs. Systematic omission of each, or combinations of factors, revealed the crucial importance of GATA2 and GATA3 for iTSC transdifferentiation. Altogether, these findings provide insights into the transcription factor network that may be operational in the human TE and broaden the methods for establishing cellular models of early human placental progenitor cells, which may be useful in the future to model placental-associated diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基质中角膜成纤维细胞向肌成纤维细胞的转分化是角膜伤口愈合中的中心机制事件。这项研究旨在使用RNA测序(RNA-seq)表征影响人角膜成纤维细胞(hCSF)转分化为人角膜肌成纤维细胞(hCMFs)的基因和途径,以开发全面的机制信息并确定角膜纤维化管理的新目标。
    初级hCSF来源于供体人角膜。通过在无血清条件下用转化生长因子β1(TGFβ1;5ng/mL)处理原代hCSF72小时来产生hCMF。使用RNeasyPlusMini试剂盒提取RNA,并在质量控制测试后进行RNA-seq分析。差异基因表达,途径富集,和蛋白质-蛋白质网络分析使用DESeq2,GSEA/PANTHER/Reactome,和Cytoscape/cytoHubba,分别。
    hCMFs和hCSFs的RNA-seq分析鉴定出3843个差异表达的基因和转录本(调整后的P<0.05)。log(倍数变化)≥±1.5过滤器显示两种细胞类型之间的816个上调和739个下调基因。通路富集分析显示上皮-间质转化的归一化富集评分最高(5.569),其次是mTORC1信号(2.949),血管生成(2.176),和TGFβ信号(2.008)。蛋白质-蛋白质相互作用网络分析确定了影响角膜肌成纤维细胞发育的前20个节点。通过实时定量逆转录PCR和免疫荧光验证了新型MXRA5在角膜基质中的表达及其与角膜纤维化的关系。将RNA-seq和基因计数文件提交至NCBI基因表达Omnibus(GSE260476)。
    这项研究发现了几个参与肌成纤维细胞发育的新基因,为开发角膜纤维化的新治疗策略提供了潜在的目标。
    UNASSIGNED: Transdifferentiation of corneal fibroblasts to myofibroblasts in the stroma is a central mechanistic event in corneal wound healing. This study sought to characterize genes and pathways influencing transdifferentiation of human corneal fibroblasts (hCSFs) to human corneal myofibroblasts (hCMFs) using RNA sequencing (RNA-seq) to develop comprehensive mechanistic information and identify newer targets for corneal fibrosis management.
    UNASSIGNED: Primary hCSFs were derived from donor human corneas. hCMFs were generated by treating primary hCSFs with transforming growth factor β1 (TGFβ1; 5 ng/mL) for 72 hours under serum-free conditions. RNA was extracted using the RNeasy Plus Mini Kit and subjected to RNA-seq analysis after quality control testing. Differential gene expression, pathway enrichment, and protein-protein network analyses were performed using DESeq2, GSEA/PANTHER/Reactome, and Cytoscape/cytoHubba, respectively.
    UNASSIGNED: RNA-seq analysis of hCMFs and hCSFs identified 3843 differentially expressed genes and transcripts (adjusted P < 0.05). The log(fold change) ≥ ±1.5 filter showed 816 upregulated and 739 downregulated genes between two cell types. Pathway enrichment analysis showed the highest normalized enrichment score for epithelial-to-mesenchymal transition (5.569), followed by mTORC1 signaling (2.949), angiogenesis (2.176), and TGFβ signaling (2.008). Protein-protein interaction network analysis identified the top 20 nodes influencing corneal myofibroblast development. The expression of a novel MXRA5 in corneal stroma and its association with corneal fibrosis was verified by real-time quantitative reverse transcription PCR and immunofluorescence. RNA-seq and gene count files were submitted to the NCBI Gene Expression Omnibus (GSE260476).
    UNASSIGNED: This study identified several novel genes involved in myofibroblast development, offering potential targets for developing newer therapeutic strategies for corneal fibrosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    亨廷顿病(HD)是一种无法治愈的遗传性疾病,由编码突变亨廷顿蛋白(mHTT)的HTT基因中CAG重复序列的扩展引起。尽管在细胞和动物模型中进行了大量研究,mHTT的生物学作用及其对纹状体神经元的毒性的潜在机制尚未建立,迄今为止,尚无针对HD患者的有效治疗方法.我们产生并表征了一种新的真皮成纤维细胞(HDDF,亨廷顿病皮肤成纤维细胞)来自确诊的HD患者。我们还研究了HDDF细胞的生长特性,为规范标记染色,对这些细胞进行核型分析,并调查了他们的表型。HDDF细胞通过转分化成功地重编程为诱导的纹状体神经元。新的成纤维细胞系可用作细胞模型,以研究mHTT的生物学作用以及通过重编程技术从其获得的成纤维细胞和诱导的神经元细胞中HD发病机理的表现。
    Huntington\'s disease (HD) is an incurable hereditary disease caused by expansion of the CAG repeats in the HTT gene encoding the mutant huntingtin protein (mHTT). Despite numerous studies in cellular and animal models, the mechanisms underlying the biological role of mHTT and its toxicity to striatal neurons have not yet been established and no effective therapy for HD patients has been developed so far. We produced and characterized a new line of dermal fibroblasts (HDDF, Huntington\'s disease dermal fibroblasts) from a patient with a confirmed HD diagnosis. We also studied the growth characteristics of HDDF cells, stained them for canonical markers, karyotyped these cells, and investigated their phenotype. HDDF cells was successfully reprogrammed into induced striatal neurons via transdifferentiation. The new fibroblast line can be used as a cell model to study the biological role of mHTT and manifestations of HD pathogenesis in both fibroblasts and induced neuronal cells obtained from them by reprogramming techniques.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    皮肤伤口,主要与I型糖尿病有关,是一个产生重大健康影响的公共卫生问题。因此,鉴定涉及成纤维细胞分化为肌成纤维细胞的主要途径/机制是指导研究有效治疗的基础。采用PRISMA准则,本研究旨在使用糖尿病小鼠模型验证主要途径/机制,并分析该领域的进展和局限性。TheMedline(PubMed),Scopus,和WebofScience平台被用于搜索。包括的研究仅限于使用具有切除伤口的糖尿病鼠模型的研究。使用SYRCLE偏倚风险工具进行偏倚分析和方法学质量评估。选择了18项研究。系统综述结果证实,糖尿病通过影响多种生长因子的表达,损害成纤维细胞向肌成纤维细胞的转化,最值得注意的是转化生长因子β(TGF-β)和NLRP3。糖尿病也损害了途径,如SMAD,c-Jun氨基末端激酶,蛋白激酶C,和核因子κβ激活caspase途径,导致细胞死亡。此外,糖尿病使伤口环境高度促氧化和炎症,这被称为氧化炎症。由于这种氧化炎症,发生胶原化过程的延迟。本系统评价的方案详细信息已在PROSPERO:CRD42021267776注册。
    Skin wounds, primarily in association with type I diabetes mellitus, are a public health problem generating significant health impacts. Therefore, identifying the main pathways/mechanisms involved in differentiating fibroblasts into myofibroblasts is fundamental to guide research into effective treatments. Adopting the PRISMA guidelines, this study aimed to verify the main pathways/mechanisms using diabetic murine models and analyze the advances and limitations of this area. The Medline (PubMed), Scopus, and Web of Science platforms were used for the search. The studies included were limited to those that used diabetic murine models with excisional wounds. Bias analysis and methodological quality assessments were undertaken using the SYRCLE bias risk tool. Eighteen studies were selected. The systematic review results confirm that diabetes impairs the transformation of fibroblasts into myofibroblasts by affecting the expression of several growth factors, most notably transforming growth factor beta (TGF-beta) and NLRP3. Diabetes also compromises pathways such as the SMAD, c-Jun N-terminal kinase, protein kinase C, and nuclear factor kappa beta activating caspase pathways, leading to cell death. Furthermore, diabetes renders the wound environment highly pro-oxidant and inflammatory, which is known as OxInflammation. As a consequence of this OxInflammation, delays in the collagenization process occur. The protocol details for this systematic review were registered with PROSPERO: CRD42021267776.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管现代医学和外科疗法取得了重要进展,但心血管疾病仍然是世界范围内死亡的主要原因。由于人类成年心肌细胞的再生能力有限,心肌梗死后丢失的心肌细胞被纤维化瘢痕组织取代,导致心脏功能障碍和心力衰竭。为了取代丢失的心肌细胞,一个有前途的方法是直接心脏重新编程,其中心脏成纤维细胞转分化为诱导的心肌细胞样细胞(iCM)。在这里,我们回顾心脏重编程鸡尾酒(包括转录因子,微RNA和小分子)介导iCM产生。我们还强调机械研究,探索这一过程的障碍和促进者。然后,我们回顾了iCM重新编程的最新进展,专注于单细胞组学研究。最后,我们讨论了临床应用的障碍。
    Cardiovascular disease remains a leading cause of death worldwide despite important advances in modern medical and surgical therapies. As human adult cardiomyocytes have limited regenerative ability, cardiomyocytes lost after myocardial infarction are replaced by fibrotic scar tissue, leading to cardiac dysfunction and heart failure. To replace lost cardiomyocytes, a promising approach is direct cardiac reprogramming, in which cardiac fibroblasts are transdifferentiated into induced cardiomyocyte-like cells (iCMs). Here we review cardiac reprogramming cocktails (including transcription factors, microRNAs and small molecules) that mediate iCM generation. We also highlight mechanistic studies exploring the barriers to and facilitators of this process. We then review recent progress in iCM reprogramming, with a focus on single-cell \'-omics\' research. Finally, we discuss obstacles to clinical application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    含CKLF样MARVEL跨膜结构域3(CMTM3),CMTM家族的一个成员,与肿瘤的发生和进展密切相关,在免疫系统中起着至关重要的作用,心血管系统,男性生殖系统。最近,CMTM3已成为治疗与骨形成相关的疾病的潜在靶标。然而,需要更多的研究来了解CMTM3调节成骨分化过程的机制.在这项研究中,我们观察到在BMP4诱导的C2C12成肌细胞向成骨细胞转分化过程中Cmtm3表达的显著下调。Cmtm3过表达抑制BMP4诱导的C2C12细胞的增殖和成骨分化,而它的击倒反过来促进了这一过程。机械上,Cmtm3过表达上调p53和p21的蛋白质和mRNA水平。相反,Cmtm3敲除产生相反的效果。此外,我们发现Cmtm3与p53相互作用,并通过抑制蛋白酶体介导的泛素化和降解增加蛋白质稳定性.值得注意的是,Trp53下调消除了Cmtm3对BMP4诱导的C2C12成肌细胞增殖和成骨分化的抑制作用。总的来说,我们的发现为CMTM3在调节成肌细胞增殖和转分化为成骨细胞中的作用提供了关键见解,强调其在成骨研究中的意义。
    CKLF-like MARVEL transmembrane domain-containing 3 (CMTM3), a member of the CMTM family that is closely related to tumor occurrence and progression, plays crucial roles in the immune system, cardiovascular system, and male reproductive system. Recently, CMTM3 has emerged as a potential target for treating diseases related to bone formation. However, additional studies are needed to understand the mechanisms by which CMTM3 regulates the process of osteogenic differentiation. In this study, we observed a significant downregulation of Cmtm3 expression during the transdifferentiation of C2C12 myoblasts into osteoblasts induced by BMP4. Cmtm3 overexpression suppressed proliferation and osteogenic differentiation in BMP4-induced C2C12 cells, whereas its knockdown conversely facilitated the process. Mechanistically, Cmtm3 overexpression upregulated both the protein and mRNA levels of p53 and p21. Conversely, Cmtm3 knockdown exerted the opposite effects. Additionally, we found that Cmtm3 interacts with p53 and increases protein stability by inhibiting proteasome-mediated ubiquitination and degradation. Notably, Trp53 downregulation abrogated the inhibitory effect of Cmtm3 on BMP4-induced proliferation and osteogenic differentiation of C2C12 myoblasts. Collectively, our findings provide key insights into the role of CMTM3 in regulating myoblast proliferation and transdifferentiation into osteoblasts, highlighting its significance in osteogenesis research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞命运的趋势对大多数扰动是稳健的,然而,对某些扰动的敏感提出了一个有趣的问题,即底层分子网络中关键路径的存在,关键路径决定了不同的细胞命运。重编程和转分化清楚地显示了通过仅调节几个或甚至单个分子开关而改变细胞命运的实例。然而,还不知道如何识别这种开关,叫做主调节器,以及细胞命运如何由其调节决定。这里,我们介绍凯撒,一个计算框架,可以系统地识别主调节器并解开产生的规范化内核,互连反馈的关键子结构,对细胞命运决定至关重要。我们证明了CAESAR可以成功预测重编程因子去分化为小鼠胚胎干细胞和造血干细胞的转分化。同时通过规范内核揭示了潜在的基本机制。CAESAR提供了复杂分子网络如何决定细胞命运的系统级理解。
    The tendency for cell fate to be robust to most perturbations, yet sensitive to certain perturbations raises intriguing questions about the existence of a key path within the underlying molecular network that critically determines distinct cell fates. Reprogramming and trans-differentiation clearly show examples of cell fate change by regulating only a few or even a single molecular switch. However, it is still unknown how to identify such a switch, called a master regulator, and how cell fate is determined by its regulation. Here, we present CAESAR, a computational framework that can systematically identify master regulators and unravel the resulting canalizing kernel, a key substructure of interconnected feedbacks that is critical for cell fate determination. We demonstrate that CAESAR can successfully predict reprogramming factors for de-differentiation into mouse embryonic stem cells and trans-differentiation of hematopoietic stem cells, while unveiling the underlying essential mechanism through the canalizing kernel. CAESAR provides a system-level understanding of how complex molecular networks determine cell fates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    孕烷X受体(PXR)是一种异源性敏感核受体,在药物代谢中起着关键作用。最近,在两阶段化学致癌小鼠模型中,发现PXR通过抑制肝癌细胞中的上皮-间质转化(EMT)来减轻肝癌的发展。阐明PXR在肝癌细胞EMT中的作用,我们专注于它在肝星状细胞(HSC)中的作用,它们是肝细胞癌(HCC)肿瘤微环境的组成部分。人HSC来源的LX-2细胞稳定表达去稳定结构域融合的人PXR(hPXR-LX2细胞)。用EMT标记VIM启动子调节的报告质粒转染人HCC衍生的HepG2细胞,并与hPXR-LX2细胞共培养或用hPXR-LX2衍生的条件培养基处理。共培养或条件培养基处理增加了HepG2细胞中的报道活性。通过用稳定去稳定结构域的化学物Shield-1和人PXR配体利福平处理,这种诱导在hPXR-LX2细胞中的PXR活化后减弱。hPXR-LX2细胞中的PXR活化表现出对TGF-β1诱导的转分化的抑制作用,通过观察转分化标记COL1A1和FN1的形态变化和蛋白质或mRNA水平来支持。hPXR-LX2细胞中的PXR激活也减弱了关键转分化因子的mRNA水平,POSTN。用重组POSTN处理hPXR-LX2细胞恢复了PXR介导的转分化抑制。使用POSTN启动子的报道分析显示,PXR抑制NF-κB介导的POSTN转录。因此,HSC中的PXR激活有望通过下调POSTN表达来抑制转分化,从而抑制肝癌细胞的EMT。
    Pregnane X receptor (PXR) is a xenobiotic-sensing nuclear receptor that plays a key role in drug metabolism. Recently, PXR was found to attenuate the development of liver cancer by suppressing epithelial-mesenchymal transition (EMT) in liver cancer cells in a mouse model of two-stage chemical carcinogenesis. To elucidate the role of PXR in the EMT of liver cancer cells, we focused on its role in hepatic stellate cells (HSCs), which are components of the tumor microenvironment in hepatocellular carcinoma (HCC). Human HSC-derived LX-2 cells stably expressed destabilization domain (DD)-fused human PXR (hPXR-LX2 cells). Human HCC-derived HepG2 cells were transfected with the EMT marker VIM promoter-regulated reporter plasmid and co-cultured with hPXR-LX2 cells or treated with hPXR-LX2-derived conditioned medium (CM). Co-culture or CM treatment increased reporter activity in HepG2 cells. This induction was attenuated upon PXR activation in hPXR-LX2 cells by treatment with the DD-stabilizing chemical Shield-1 and the human PXR ligand rifampicin. PXR activation in hPXR-LX2 cells exhibited inhibition of TGF-β1-induced transdifferentiation, supported by observations of morphological changes and protein or mRNA levels of the transdifferentiation markers COL1A1 and FN1. PXR activation in hPXR-LX2 cells also attenuated the mRNA levels of the key transdifferentiation factor, POSTN. Treatment of hPXR-LX2 cells with recombinant POSTN restored the PXR-mediated suppression of transdifferentiation. Reporter assays with the POSTN promoter showed that PXR inhibited the NF-κB-mediated transcription of POSTN. Consequently, PXR activation in HSCs is expected to inhibit transdifferentiation by down-regulating POSTN expression, thereby suppressing EMT of liver cancer cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用糖皮质激素可能会导致眼内压升高,导致糖皮质激素诱导的青光眼(GIG)的发展。然而,GIG发展的机制尚不完全清楚。在这项研究中,我们对原代人小梁细胞(TMCs)和小鼠进行地塞米松处理以模拟糖皮质激素暴露.在细胞和小鼠模型中观察到TMC的肌成纤维细胞转分化,以及人体小梁网格标本。细胞骨架重组证明了这一点,细胞形态的改变,增强的转分化标记,细胞外基质沉积增加,和细胞功能障碍。敲除Rho鸟嘌呤核苷酸交换因子26(ARHGEF26)表达改善了地塞米松诱导的细胞形态变化和肌成纤维细胞标志物的上调,TMC中的逆转功能障碍和细胞外基质沉积,并阻止地塞米松诱导的高眼压的发展。And,这一过程可能与TGF-β途径有关。总之,糖皮质激素诱导TMC中的肌成纤维细胞转分化,在GIG的发病机制中起着至关重要的作用。ARHGEF26表达的抑制通过逆转成肌纤维细胞转分化来保护TMCs。这项研究证明了逆转TMC的成肌纤维细胞转分化作为治疗GIG的新靶标的潜力。
    Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-β pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    了解剪接和无义变体对RNA的影响对于解决变体分类及其对精准医学干预的适用性至关重要。这主要通过涉及转录组学的RNA研究以及随后使用从临床上可接近的组织(CAT)(例如受影响个体的血液或皮肤)分离的RNA进行靶向测定来实现。然而,CAT中疾病基因表达不足确实对基于RNA的研究构成了主要障碍,我们显示与1,436个孟德尔疾病基因有关。我们称之为“沉默”孟德尔基因(SMGs),其中最大的部分(36%)与神经系统疾病相关。我们开发了两种方法来诱导人真皮成纤维细胞(HDFs)中的SMG表达,以克服这一限制,包括基于CRISPR激活的基因反式激活和成纤维细胞到神经元的转分化。涉及40个SMG的初始反式激活筛选刺激了我们高度多重的反式激活系统的发展,最终导致HDF中测试的20/20(100%)SMG表达的6至90,000倍诱导。HDF直接向神经元的转分化导致193/516(37.4%)与神经系统疾病有关的SMG的表达。反式激活或转分化后SMG表达的幅度和同工型多样性与临床相关组织相当。我们应用转分化和/或基因反式激活结合短读和长读RNA测序来研究变异在USH2A中的影响。SCN1A,DMD,和PAK3在RNA上使用来自受影响个体的HDF。反式激活和转分化代表快速,可扩展的功能基因组解决方案,以研究影响患者细胞和基因组环境中SMG的变体。
    Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs) such as blood or skin of affected individuals. Insufficient disease gene expression in CATs does however pose a major barrier to RNA based investigations, which we show is relevant to 1,436 Mendelian disease genes. We term these \"silent\" Mendelian genes (SMGs), the largest portion (36%) of which are associated with neurological disorders. We developed two approaches to induce SMG expression in human dermal fibroblasts (HDFs) to overcome this limitation, including CRISPR-activation-based gene transactivation and fibroblast-to-neuron transdifferentiation. Initial transactivation screens involving 40 SMGs stimulated our development of a highly multiplexed transactivation system culminating in the 6- to 90,000-fold induction of expression of 20/20 (100%) SMGs tested in HDFs. Transdifferentiation of HDFs directly to neurons led to expression of 193/516 (37.4%) of SMGs implicated in neurological disease. The magnitude and isoform diversity of SMG expression following either transactivation or transdifferentiation was comparable to clinically relevant tissues. We apply transdifferentiation and/or gene transactivation combined with short- and long-read RNA sequencing to investigate the impact that variants in USH2A, SCN1A, DMD, and PAK3 have on RNA using HDFs derived from affected individuals. Transactivation and transdifferentiation represent rapid, scalable functional genomic solutions to investigate variants impacting SMGs in the patient cell and genomic context.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号