Barefoot

赤脚
  • 文章类型: Journal Article
    Habitual footwear use has been reported to influence foot structure with an acute exposure being shown to alter foot position and mechanics. The foot is highly specialised thus these changes in structure/position could influence functionality. This review aims to investigate the effect of footwear on gait, specifically focussing on studies that have assessed kinematics, kinetics and muscle activity between walking barefoot and in common footwear. In line with PRISMA and published guidelines, a literature search was completed across six databases comprising Medline, EMBASE, Scopus, AMED, Cochrane Library and Web of Science. Fifteen of 466 articles met the predetermined inclusion criteria and were included in the review. All articles were assessed for methodological quality using a modified assessment tool based on the STROBE statement for reporting observational studies and the CASP appraisal tool. Walking barefoot enables increased forefoot spreading under load and habitual barefoot walkers have anatomically wider feet. Spatial-temporal differences including, reduced step/stride length and increased cadence, are observed when barefoot. Flatter foot placement, increased knee flexion and a reduced peak vertical ground reaction force at initial contact are also reported. Habitual barefoot walkers exhibit lower peak plantar pressures and pressure impulses, whereas peak plantar pressures are increased in the habitually shod wearer walking barefoot. Footwear particularly affects the kinematics and kinetics of gait acutely and chronically. Little research has been completed in older age populations (50+ years) and thus further research is required to better understand the effect of footwear on walking across the lifespan.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: The popularity of running barefoot or in minimalist shoes has recently increased because of claims of injury prevention, enhanced running efficiency, and improved performance compared with running in shoes. Potential risks and benefits of running barefoot or in minimalist shoes have yet to be clearly defined.
    OBJECTIVE: To determine the methodological quality and level of evidence pertaining to the risks and benefits of running barefoot or in minimalist shoes.
    METHODS: In September 2013, a comprehensive search of the Ovid MEDLINE, SPORTDiscus, and CINAHL databases was performed by 2 independent reviewers.
    METHODS: Included articles were obtained from peer-reviewed journals in the English language with no limit for year of publication. Final inclusion criteria required at least 1 of the following outcome variables: pain, injury rate, running economy, joint forces, running velocity, electromyography, muscle performance, or edema.
    METHODS: Systematic review.
    METHODS: Level 3.
    METHODS: Two reviewers appraised each article using the Downs and Black checklist and appraised each for level of evidence.
    RESULTS: Twenty-three articles met the criteria for this review. Of 27 possible points on the Downs and Black checklist, articles scored between 13 and 19 points, indicating a range of evidence from very limited to moderate. Moderate evidence supports the following biomechanical differences when running barefoot versus in shoes: overall less maximum vertical ground reaction forces, less extension moment and power absorption at the knee, less foot and ankle dorsiflexion at ground contact, less ground contact time, shorter stride length, increased stride frequency, and increased knee flexion at ground contact.
    CONCLUSIONS: Because of lack of high-quality evidence, no definitive conclusions can be drawn regarding specific risks or benefits to running barefoot, shod, or in minimalist shoes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Although it could be perceived that there is extensive research on the impact attenuation characteristics of shoes, the approach and findings of researchers in this area are varied. This review aimed to clarify the effect of shoes on impact attenuation to the foot and lower leg and was limited to those studies that compared the shoe condition(s) with barefoot. A systematic search of the literature yielded 26 studies that investigated vertical ground reaction force, axial tibial acceleration, loading rate and local plantar pressures. Meta-analyses of the effect of shoes on each variable during walking and running were performed using the inverse variance technique. Variables were collected at their peak or at the impact transient, but when grouped together as previous comparisons have done, shoes reduced local plantar pressure and tibial acceleration, but did not affect vertical force or loading rate for walking. During running, shoes reduced tibial acceleration but did not affect loading rate or vertical force. Further meta-analyses were performed, isolating shoe type and when the measurements were collected. Athletic shoes reduced peak vertical force during walking, but increased vertical force at the impact transient and no change occurred for the other variables. During running, athletic shoes reduced loading rate but did not affect vertical force. The range of variables examined and variety of measurements used appears to be a reason for the discrepancies across the literature. The impact attenuating effect of shoes has potentially both adverse and beneficial effects depending on the variable and activity under investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号