BRM

BRM
  • 文章类型: Journal Article
    The field of tissue-resident B cells has received increasing attention, yet the feature of tissue B cells in respiratory system is unclear. Here, we first show that non-circulating B cells obtained from nasal, trachea and lung tissues are numerically and phenotypically distinct from their circulating counterparts. Analysis of single cell transcriptome sequence identified multiple differentially expressed genes between non-circulating B cells and circulating B cells, which illustrated their heterogeneity. Furthermore, we found high expression of CXCR3 on non-circulating B cells, and the chemokine CXCL11 was also up-regulated in the respiratory tissues, suggesting that CXCR3-CXCL11 axis might accelerate the local resident of non-circulating B cells in respiratory tract. Interestingly, intranasal immunization with BCG in mice elicited a sustained humoral immune response via induction of IgA and IgG Abs, which revealed the role of B cells. Meanwhile, tissue-resident B cells, IgA+ and IgG+ memory B cells (MBCs) in respiratory tissues, as well as plasma cells in bone marrow, were expanded and maintained, and these subsets probably developed into antibody-producing cells to participate in the local humoral immunity. Our data illustrate the phenotype and function of tissue B cells in the upper and lower airways, provide references for the prospective development of vaccines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号