Alu

Alu
  • 文章类型: Journal Article
    “X染色体-核仁关系”假说提供了对自身抗体如何在细胞应激后发展的全面解释。该假设将自身免疫性疾病与环境因素的影响联系起来,如病毒,通过表观遗传破坏。不活跃的X染色体,女性细胞核中的主要表观遗传结构,是该假设的关键组成部分。由于以下原因,无活性的X很容易被破坏:(1)其对甲基化的大量需求以抑制基因表达,(2)其在核包络处的外围位置,(3)其复制时间较晚,(4)经常观察到的与核仁的紧密联系。动态核仁可以响应细胞应激而急剧扩张,这可能会破坏邻近的无活性X,特别是在复制过程中,导致以前抑制的染色质表达。在无活性X染色体表面特别脆弱的是从Xp22到X短臂末端的基因和元件。这些基因和元件的表达可能会干扰核仁完整性,核仁效率,和未来的核仁应激反应,甚至导致核仁碎裂.组装在核仁中的核糖核蛋白复合物可能处于不完整状态和不适当的构象,和/或当核仁被破坏时含有病毒组分,并且这些异常复合物在暴露于免疫系统时可引发自身免疫应答。然后表位扩散可能导致对更丰富的正常复合物的自身免疫反应。在狼疮和其他自身免疫性疾病中报道的许多自身抗原是,至少是短暂的,核仁成分。
    The \"X chromosome-nucleolus nexus\" hypothesis provides a comprehensive explanation of how autoantibodies can develop following cellular stress. The hypothesis connects autoimmune diseases with the impact of environmental factors, such as viruses, through epigenetic disruption. The inactive X chromosome, a major epigenetic structure in the female cell\'s nucleus, is a key component of the hypothesis. The inactive X is vulnerable to disruption due to the following: (1) its heavy requirements for methylation to suppress gene expression, (2) its peripheral location at the nuclear envelope, (3) its late replication timing, and (4) its frequently observed close association with the nucleolus. The dynamic nucleolus can expand dramatically in response to cellular stress and this could disrupt the neighboring inactive X, particularly during replication, leading to expression from previously suppressed chromatin. Especially vulnerable at the surface of the inactive X chromosome would be genes and elements from Xp22 to the terminus of the short arm of the X. Expression of these genes and elements could interfere with nucleolar integrity, nucleolar efficiency, and future nucleolar stress response, and even lead to fragmentation of the nucleolus. Ribonucleoprotein complexes assembled in the nucleolus could be left in incomplete states and inappropriate conformations, and/or contain viral components when the nucleolus is disrupted and these abnormal complexes could initiate an autoimmune response when exposed to the immune system. Epitope spreading could then lead to an autoimmune reaction to the more abundant normal complexes. Many autoantigens reported in lupus and other autoimmune diseases are, at least transiently, nucleolar components.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    反转录转座子产生了约40%的人类基因组。这篇综述研究了细胞进化到与这些基因组“寄生虫”共存的策略,集中于人和小鼠的非长末端重复反转录转座子。逆转换位的一些限制因素,包括APOBEC,MOV10RNASEL,SAMHD1、TREX1和ZAP,也限制了逆转录病毒的复制,包括艾滋病毒,是细胞内在免疫系统的一部分。这些蛋白质中的许多在细胞质中起作用以降解逆转录元件RNA或抑制其翻译。一些因素在细胞核中起作用,涉及DNA修复酶或DNA甲基化和组蛋白修饰的表观遗传过程。RISC和piRNA途径蛋白保护种系。逆转录转座子控制在某些细胞类型中是放松的,比如大脑中的神经元,干细胞,在某些类型的疾病和癌症中,对人类健康和疾病的影响。这篇综述还考虑了解释逆转录转座子相关数据的潜在陷阱,以及未来研究需要考虑的问题。
    Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic \"parasites\", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号