γδ T cell

γ δ T 细胞
  • 文章类型: Journal Article
    Intensive worldwide efforts are underway to determine both the pathogenesis of SARS-CoV-2 infection and the immune responses in COVID-19 patients in order to develop effective therapeutics and vaccines. One type of cell that may contribute to these immune responses is the γδ T lymphocyte, which plays a key role in immunosurveillance of the mucosal and epithelial barriers by rapidly responding to pathogens. Although found in low numbers in blood, γδ T cells consist the majority of tissue-resident T cells and participate in the front line of the host immune defense. Previous studies have demonstrated the critical protective role of γδ T cells in immune responses to other respiratory viruses, including SARS-CoV-1. However, no studies have profoundly investigated these cells in COVID-19 patients to date. γδ T cells can be safely expanded in vivo using existing inexpensive FDA-approved drugs such as bisphosphonate, in order to test its protective immune response to SARS-CoV-2. To support this line of research, we review insights gained from previous coronavirus research, along with recent findings, discussing the potential role of γδ T cells in controlling SARS-CoV-2. We conclude by proposing several strategies to enhance γδ T cell\'s antiviral function, which may be used in developing therapies for COVID-19.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Most circulating human gamma delta T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains show a Vγ9-JP (Vγ2-Jγ1.2) rearrangement and are paired with Vδ2-containing δ-chains, a dominant TCR configuration, which until recently seemed to occur in primates only. Vγ9Vδ2 T cells respond to phosphoantigens (PAg) such as (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is produced by many pathogens and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. A prerequisite for PAg-induced activation is the contact of Vγ9Vδ2 T cells with cells expressing butyrophilin-3 A1 (BTN3A1). We will first critically review models of how BTN3 might act in PAg-mediated Vγ9Vδ2 T cell activation and then address putative co-evolution of Vγ9, Vδ2, and BTN3 genes. In those rodent and lagomorphs used as animal models, all three genes are lost but a data-base analysis showed that they emerged together with placental mammals. A strong concomitant conservation of functional Vγ9, Vδ2, and BTN3 genes in other species suggests co-evolution of these three genes. A detailed analysis was performed for the new world camelid alpaca (Vicugna pacos). It provides an excellent candidate for a non-primate species with presumably functional Vγ9Vδ2 T cells since TCR rearrangements share features characteristic for PAg-reactive primate Vγ9Vδ2 TCR and proposed PAg-binding sites of BTN3A1 have been conserved. Finally, we analyze the possible functional relationship between the butyrophilin-family member Skint1 and the γδ TCR-V genes used by murine dendritic epithelial T cells (DETC). Among placental mammals, we identify five rodents, the cow, a bat, and the cape golden mole as the only species concomitantly possessing potentially functional homologs of murine Vγ3, Vδ4 genes, and Skint1 gene and suggest to search for DETC like cells in these species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号