Mesh : Adenosine Triphosphatases / biosynthesis Animals Biological Transport, Active Cell Compartmentation Cell Membrane Permeability Cytochrome c Group / biosynthesis Cytoplasm / metabolism DNA / metabolism Endoplasmic Reticulum / ultrastructure Glutamate Dehydrogenase / biosynthesis Liver / metabolism Malate Dehydrogenase / metabolism Mitochondria / metabolism Molecular Weight Polyribosomes / metabolism Protein Biosynthesis Protein Precursors / biosynthesis Proteins / metabolism Proton-Translocating ATPases RNA, Ribosomal / biosynthesis Ribosomes / metabolism

来  源:   DOI:10.1007/BF00423100   PDF(Sci-hub)

Abstract:
This review examines the mechanism of translocation of cytoplasmically synthesized proteins into mitochondria. Approximately 10% of the mitochondrial proteins are synthesized within the organelles while most mitochondrial proteins are coded for by nuclear genes and synthesized on cytoplasmic ribosomes. Those mitochondrial proteins synthesized on cytoplasmic ribosomes have to be transferred at some point into one of the mitochondrial compartments, a process which would require their insertion through one or both mitochondrial membranes. Data accumulated during the past five years indicate that the cytoplasmically synthesized mitochondrial proteins are synthesized on free polysomes then released into the cytoplasm. Most of the proteins examined so far are synthesized in the cytoplasm as larger precursors whose conformations may differ from the conformations of their respective mature forms. These precursor proteins become translocated into mitochondrial post-translationally and processed to their mature forms either during or immediately following translocation into the organelles. The translocation step appears to require mitochondrial ATP. Some processing activities have been localized in the matrix fractions of mitochondria from liver and yeast and they appear to be associated with soluble endopeptidases which act selectively on precursors of mitochondrial proteins. Although it is not clear how the precursor proteins interact with or recognize mitochondrial membranes, studies in yeast indicate that the interactions occur at specific regions on the other mitochondrial membranes.
摘要:
暂无翻译

参考文献

公众号