关键词: Animal experimentation Hazardousness Nanoplastics Pharmaceuticals Tadpoles

来  源:   DOI:10.1016/j.scitotenv.2024.175375

Abstract:
Chemical pollution is a major driver for the current worldwide crisis of amphibian decline. The present study aimed to assess the influence of polystyrene nanoplastics (PS-NPLs) on the toxicity of haloperidol to aquatic life stages of amphibians, by using in vivo (tadpoles of Xenopus laevis and Pelophylax perezi) and in vitro (A6 and XTC-2 cell lines of X. laevis) biological models. Tadpoles of both species were exposed, for 96 h, to haloperidol: 0.404 to 2.05 mg l-1 (X. laevis) or 0.404 to 3.07 mg L-1 (P. perezi). The most sensitive species to haloperidol (X. laevis) was exposed to haloperidol\'s LC50,96h combined with two PS-NPLs concentrations (0.01 mg L-1 or 10 mg L-1); the following endpoints were monitored: mortality, malformations, body lengths and weight. In vitro cytotoxicity was assessed by exposing the two cell lines, for 72 h, to: haloperidol (0.195 to 100 mg L-1) alone and combined with 0.01 mg L-1 or 10 mg L-1 of PS-NPLs. Xenopus laevis tadpoles revealed a higher lethal and sublethal sensitivity to haloperidol than those of P. perezi, with LC50,96h of 1.45 and 2.20 mg L-1. In vitro assays revealed that A6 cell line is more sensitive haloperidol than XTC-2: LC50,72h of 13.2 mg L-1 and 5.92 mg L-1, respectively. Results also suggested a higher sensitivity of in vivo models when compared to in vitro biological. Overall, PS-NPLs did not influence haloperidol\'s toxicity for in vivo and in vitro biological models, except for a reduction on the incidence of malformations while increasing the lethal toxicity (at the lowest concentration) in tadpoles. These opposite interaction patterns highlight the need for a deeper comprehension of NPLs and pharmaceuticals interactions. Results suggest a low risk of haloperidol for anuran tadpoles, though in the presence of PS-NPLs the risk may be increased.
摘要:
化学污染是当前全球两栖动物衰退危机的主要驱动因素。本研究旨在评估聚苯乙烯纳米塑料(PS-NPLs)对氟哌啶醇对两栖动物水生生物阶段的毒性的影响,通过使用体内(非洲爪的and和Pelophylaxperezi)和体外(X.laevis的A6和XTC-2细胞系)生物学模型。这两个物种的t都暴露了,96小时,氟哌啶醇:0.404至2.05mgl-1(X。laevis)或0.404至3.07mgL-1(P.perezi)。对氟哌啶醇最敏感的物种(X。laevis)暴露于氟哌啶醇LC50,96h,并结合两种PS-NPLs浓度(0.01mgL-1或10mgL-1);监测以下终点:死亡率,畸形,身体的长度和重量。通过暴露两种细胞系来评估体外细胞毒性,72小时,至:氟哌啶醇(0.195至100mgL-1)单独并与0.01mgL-1或10mgL-1的PS-NPL组合。对氟哌啶醇的致命性和亚致命性敏感性高于对P.perezi的致命性和致命性。LC50,96h为1.45和2.20mgL-1。体外实验表明,A6细胞系比XTC-2:LC50更敏感,分别为13.2mgL-1和5.92mgL-1。结果还表明,与体外生物学相比,体内模型的灵敏度更高。总的来说,PS-NPL不影响氟哌啶醇对体内和体外生物学模型的毒性,除了减少畸形的发生率,同时增加t的致死毒性(在最低浓度下)。这些相反的相互作用模式凸显了对不良贷款和药物相互作用有更深入理解的必要性。结果表明,氟哌啶醇对无主t的风险较低,尽管在存在PS-NPL的情况下,风险可能会增加。
公众号