关键词: Bladder cancer CRISPR-Cas13a Flubendazole Fluorinated chitosan Programmed death ligand 1 Transmembrane peptides

Mesh : Urinary Bladder Neoplasms / drug therapy genetics pathology therapy Humans Animals Administration, Intravesical Mice CRISPR-Cas Systems Cell Line, Tumor Female

来  源:   DOI:10.1186/s13046-024-03146-0   PDF(Pubmed)

Abstract:
BACKGROUND: CRISPR-Cas13a is renowned for its precise and potent RNA editing capabilities in cancer therapy. While various material systems have demonstrated efficacy in supporting CRISPR-Cas13a to execute cellular functions in vitro efficiently and specifically, the development of CRISPR-Cas13a-based therapeutic agents for intravesical instillation in bladder cancer (BCa) remains unexplored.
METHODS: In this study, we introduce a CRISPR-Cas13a nanoplatform, which effectively inhibits PDL1 expression following intravesical instillation. This system utilizes a fusion protein CAST, created through the genetic fusion of CRISPR-Cas13 and the transmembrane peptide TAT. CAST acts as a potent transmembrane RNA editor and is assembled with the transepithelial delivery carrier fluorinated chitosan (FCS). Upon intravesical administration into the bladder, the CAST-crRNAa/FCS nanoparticles (NPs) exhibit remarkable transepithelial capabilities, significantly suppressing PDL1 expression in tumor tissues.To augment immune activation within the tumor microenvironment, we integrated a fenbendazole (FBZ) intravesical system (FBZ@BSA/FCS NPs). This system is formulated through BSA encapsulation followed by FCS coating, positioning FBZ as a powerful chemo-immunological agent.
RESULTS: In an orthotropic BCa model, the FBZ@BSA/FCS NPs demonstrated pronounced tumor cell apoptosis, synergistically reduced PDL1 expression, and restructured the immune microenvironment. This culminated in an enhanced synergistic intravesical instillation approach for BCa. Consequently, our study unveils a novel RNA editor nanoagent formulation and proposes a potential synergistic therapeutic strategy. This approach significantly bolsters therapeutic efficacy, holding promise for the clinical translation of CRISPR-Cas13-based cancer perfusion treatments.
摘要:
背景:CRISPR-Cas13a因其在癌症治疗中的精确和有效的RNA编辑能力而闻名。虽然各种材料系统已经证明在支持CRISPR-Cas13a在体外有效和特异性地执行细胞功能方面的功效,基于CRISPR-Cas13a的膀胱癌膀胱内滴注治疗药物(BCa)的开发仍未被探索.
方法:在本研究中,我们介绍了一个CRISPR-Cas13a纳米平台,有效抑制膀胱内滴注后的PDL1表达。该系统利用融合蛋白CAST,通过CRISPR-Cas13和跨膜肽TAT的遗传融合产生。CAST充当有效的跨膜RNA编辑器,并与跨上皮递送载体氟化壳聚糖(FCS)组装在一起。膀胱内给药后,CAST-crRNAa/FCS纳米粒子(NPs)表现出显著的跨上皮能力,显著抑制肿瘤组织中PDL1的表达。为了增强肿瘤微环境内的免疫激活,我们整合了芬苯达唑(FBZ)膀胱系统(FBZ@BSA/FCSNP)。该系统是通过BSA封装,然后FCS涂层配制的,将FBZ定位为强大的化学免疫试剂。
结果:在正交各向异性BCa模型中,FBZ@BSA/FCSNP表现出明显的肿瘤细胞凋亡,协同降低PDL1表达,重组了免疫微环境。这最终导致了BCa的增强的协同膀胱内滴注方法。因此,我们的研究揭示了一种新的RNA编辑器纳米剂制剂,并提出了一种潜在的协同治疗策略。这种方法显着增强了治疗效果,有望临床转化基于CRISPR-Cas13的癌症灌注治疗。
公众号