关键词: TMDCs chirality graphene orbital angular momentum strain two-dimensional materials

来  源:   DOI:10.1021/acsnano.4c04506   PDF(Pubmed)

Abstract:
Single-layer two-dimensional (2D) nanomaterials exhibit physical and chemical properties which can be dynamically modulated through out-of-plane deformations. Existing methods rely on intricate micromechanical manipulations (e.g., poking, bending, rumpling), hindering their widespread technological implementation. We address this challenge by proposing an all-optical approach that decouples strain engineering from micromechanical complexities. This method leverages the forces generated by chiral light beams carrying orbital angular momentum (OAM). The inherent sense of twist of these beams enables the exertion of controlled torques on 2D monolayer materials, inducing tailored strain. This approach offers a contactless and dynamically tunable alternative to existing methods. As a proof-of-concept, we demonstrate control over the conductivity of graphene transistors using chiral light beams, showcasing the potential of this approach for manipulating properties in future electronic devices. This optical control mechanism holds promise in enabling the reconfiguration of devices through optically patterned strain. It also allows broader utilization of strain engineering in 2D nanomaterials for advanced functionalities in next-generation optoelectronic devices and sensors.
摘要:
单层二维(2D)纳米材料具有物理和化学性质,可以通过平面外变形进行动态调节。现有的方法依赖于复杂的微机械操作(例如,戳,弯曲,隆隆),阻碍了他们广泛的技术实施。我们通过提出一种将应变工程与微机械复杂性分离的全光学方法来解决这一挑战。该方法利用由携带轨道角动量(OAM)的手性光束产生的力。这些梁固有的扭曲感使得能够在2D单层材料上施加受控的扭矩,诱导定制菌株。这种方法提供了对现有方法的非接触式和动态可调的替代方案。作为一个概念证明,我们展示了使用手性光束控制石墨烯晶体管的导电性,展示了这种方法在未来电子设备中操纵属性的潜力。这种光学控制机制有望通过光学图案化应变实现器件的重新配置。它还允许更广泛地利用二维纳米材料中的应变工程,以实现下一代光电器件和传感器的高级功能。
公众号