关键词: Drosophila campaniform sensilla flight control haltere maneuverability stability

Mesh : Animals Flight, Animal / physiology Sensilla / physiology Diptera / physiology Mechanoreceptors / physiology Wings, Animal / physiology

来  源:   DOI:10.1016/j.cub.2024.06.066   PDF(Pubmed)

Abstract:
Members of the order Diptera, the true flies, are among the most maneuverable flying animals. These aerial capabilities are partially attributed to flies\' possession of halteres, tiny club-shaped structures that evolved from the hindwings and play a crucial role in flight control. Halteres are renowned for acting as biological gyroscopes that rapidly detect rotational perturbations and help flies maintain a stable flight posture. Additionally, halteres provide rhythmic input to the wing steering system that can be indirectly modulated by the visual system. The multifunctional capacity of the haltere is thought to depend on arrays of embedded mechanosensors called campaniform sensilla that are arranged in distinct groups on the haltere\'s dorsal and ventral surfaces. Although longstanding hypotheses suggest that each array provides different information relevant to the flight control circuitry, we know little about how the haltere campaniforms are functionally organized. Here, we use in vivo calcium imaging during tethered flight to obtain population-level recordings of the haltere sensory afferents in specific fields of sensilla. We find that haltere feedback from both dorsal fields is continuously active, modulated under closed-loop flight conditions, and recruited during saccades to help flies actively maneuver. We also find that the haltere\'s multifaceted role may arise from the steering muscles of the haltere itself, regulating haltere stroke amplitude to modulate campaniform activity. Taken together, our results underscore the crucial role of efferent control in regulating sensor activity and provide insight into how the sensory and motor systems of flies coevolved.
摘要:
双翅目的成员,真正的苍蝇,是机动性最强的飞行动物之一。这些空中能力部分归因于苍蝇拥有马笼式飞机,从后翼进化而来的微小的棍状结构,在飞行控制中起着至关重要的作用。Halteres以作为生物陀螺仪而闻名,可快速检测旋转扰动并帮助苍蝇保持稳定的飞行姿势。此外,悬架为机翼转向系统提供有节奏的输入,该输入可以由视觉系统间接调制。吊带的多功能能力被认为取决于嵌入式机械传感器阵列,称为campaniformsensilla,这些传感器在吊带的背侧和腹侧表面上以不同的组排列。尽管长期以来的假设表明每个阵列提供与飞行控制电路相关的不同信息,我们对halterecampaniforms在功能上是如何组织的知之甚少。这里,我们在系留飞行期间使用体内钙成像来获得特定感官领域的haltere感觉传入的人群水平记录。我们发现来自两个背场的haltere反馈是连续活跃的,在闭环飞行条件下调制,并在扫视期间招募以帮助苍蝇积极机动。我们还发现,吊带的多方面作用可能来自吊带本身的转向肌肉,调节haltere中风幅度以调节campaniform活动。一起来看,我们的结果强调了传出控制在调节传感器活动中的关键作用,并提供了对苍蝇的感觉和运动系统如何共同进化的见解。
公众号