关键词: Computational modeling Constituent-specific behavior Contrast-enhanced computed tomography Dual-contrast agent Osteoarthritis Photon-counting detector

Mesh : Animals Finite Element Analysis Horses Cartilage, Articular / diagnostic imaging physiology Nanoparticles X-Ray Microtomography Contrast Media / chemistry Models, Biological

来  源:   DOI:10.1007/s10439-024-03552-7   PDF(Pubmed)

Abstract:
The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (n = 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents\' intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta2O5-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta2O5-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment.
摘要:
关节软骨在活动期间承受显著机械应力的能力,比如走路或跑步,依赖于其独特的结构。由于分析这些特性的复杂性,将详细的组织特性集成到特定对象的生物力学模型中具有挑战性。这种限制损害了复制软骨功能的模型的准确性并影响预测能力。为了解决这个问题,在成分特异性水平上揭示软骨功能的方法是必不可少的。在这项研究中,我们证明了计算模型得出的个体成分特定的生物力学特性可以通过一种新型的纳米颗粒对比增强计算机断层扫描(CECT)方法来预测。我们使用对比增强显微计算机断层扫描(µCECT)对从马窒息关节(n=60)收集的关节软骨样本进行成像,以确定样本中的造影剂摄入量。并将其与软骨功能特性进行比较,由原纤维增强的多孔弹性有限元模型得出。研究了两种不同的成像技术:采用阳离子氧化钽纳米颗粒(Ta2O5-cNP)造影剂的常规能量积分µCECT和采用双造影剂的新型光子计数µCECT,包含Ta2O5-cNP和中性碘克沙醇。结果表明,评估软骨的纤维和非纤维功能的能力,以及受渗透性影响的软骨中的流体流动。这一发现表明了将这些特定功能特性纳入生物力学计算模型的可行性,保持个性化方法的软骨诊断和治疗的潜力。
公众号