关键词: Bone biomechanics Euler-Bernoulli-Beam-Theory Femoral fracture Finite elements analysis Simplified loading model

Mesh : Humans Stress, Mechanical Femur / physiology surgery Finite Element Analysis Femoral Fractures / surgery physiopathology Bone Plates Weight-Bearing / physiology Fracture Fixation, Internal / methods instrumentation Models, Biological Biomechanical Phenomena

来  源:   DOI:10.1016/j.jbiomech.2024.112229

Abstract:
The success of surgical treatment for fractures hinges on various factors, notably accurate surgical indication. The process of developing and certifying a new osteosynthesis device is a lengthy and costly process that requires multiple cycles of review and validation. Current methods, however, often rely on predecessor standards rather than physiological loads in specific anatomical locations. This study aimed to determine actual loads experienced by an osteosynthesis plate, exemplified by a standard locking plate for the femoral shaft, utilizing finite elements analysis (FEA) and to obtain the bending moments for implant development standard tests. A protocol was developed, involving the creation and validation of a fractured femur model fixed with a locking plate, mechanical testing, and FEA. The model\'s validation demonstrated exceptional accuracy in predicting deformations, and the FEA revealed peak stresses in the fracture bridging zone. Results of a parametric analysis indicate that larger fracture gaps significantly impact implant mechanical behavior, potentially compromising stability. This study underscores the critical need for realistic physiological conditions in implant evaluations, providing an innovative translational approach to identify internal loads and optimize implant designs. In conclusion, this research contributes to enhancing the understanding of implant performance under physiological conditions, promoting improved designs and evaluations in fracture treatments.
摘要:
骨折手术治疗的成功取决于各种因素,特别是准确的手术指征。开发和认证新的骨接合装置的过程是漫长且昂贵的过程,其需要多个周期的审查和验证。目前的方法,然而,通常依赖于先前的标准,而不是特定解剖位置的生理负荷。本研究旨在确定接骨板所承受的实际载荷,以股骨干的标准锁定板为例,利用有限元分析(FEA),并获得用于植入物开发标准测试的弯矩。制定了一个协议,涉及用锁定板固定的股骨骨折模型的创建和验证,机械测试,和FEA。模型的验证证明了在预测变形方面的卓越准确性,有限元分析显示裂缝桥接区的峰值应力。参数分析的结果表明,较大的断裂间隙显着影响植入物的力学行为,可能损害稳定性。这项研究强调了在植入物评估中对现实生理条件的关键需求。提供创新的平移方法来识别内部载荷并优化植入物设计。总之,这项研究有助于增强对生理条件下植入物性能的理解,促进骨折治疗中改进的设计和评估。
公众号