关键词: antibacterial mesoporous silicon reactive oxygen species wound healing

Mesh : Wound Healing / drug effects Animals Mice Nanoparticles / chemistry Oxides / chemistry pharmacology Manganese Compounds / chemistry pharmacology Porosity Reactive Oxygen Species / metabolism Anti-Infective Agents / pharmacology chemistry Calcium Compounds / chemistry pharmacology Oxidation-Reduction Anti-Bacterial Agents / pharmacology chemistry Manganese / chemistry pharmacology Microbial Sensitivity Tests

来  源:   DOI:10.3390/molecules29132960   PDF(Pubmed)

Abstract:
Managing chronic non-healing wounds presents a significant clinical challenge due to their frequent bacterial infections. Mesoporous silica-based materials possess robust wound-healing capabilities attributed to their renowned antimicrobial properties. The current study details the advancement of mesoporous silicon-loaded MnO and CaO molecules (HMn-Ca) against bacterial infections and chronic non-healing wounds. HMn-Ca was synthesized by reducing manganese chloride and calcium chloride by urotropine solution with mesoporous silicon as the template, thereby transforming the manganese and calcium ions on the framework of mesoporous silicon. The developed HMn-Ca was investigated using scanning electron microscopy (SEM), transmission electron microscope (TEM), ultraviolet-visible (UV-visible), and visible spectrophotometry, followed by the determination of Zeta potential. The production of reactive oxygen species (ROS) was determined by using the 3,3,5,5-tetramethylbenzidine (TMB) oxidation reaction. The wound healing effectiveness of the synthesized HMn-Ca is evaluated in a bacterial-infected mouse model. The loading of MnO and CaO inside mesoporous silicon enhanced the generation of ROS and the capacity of bacterial capture, subsequently decomposing the bacterial membrane, leading to the puncturing of the bacterial membrane, followed by cellular demise. As a result, treatment with HMn-Ca could improve the healing of the bacterial-infected wound, illustrating a straightforward yet potent method for engineering nanozymes tailored for antibacterial therapy.
摘要:
由于其频繁的细菌感染,管理慢性不愈合伤口提出了重大的临床挑战。介孔二氧化硅基材料具有强大的伤口愈合能力,这归因于它们著名的抗微生物特性。当前的研究详述了中孔硅负载的MnO和CaO分子(HMn-Ca)对抗细菌感染和慢性不愈合伤口的进展。以介孔硅为模板,用乌洛托品溶液还原氯化锰和氯化钙合成HMn-Ca,从而转化了中孔硅骨架上的锰和钙离子。使用扫描电子显微镜(SEM)研究了开发的HMn-Ca,透射电子显微镜(TEM),紫外可见(UV可见),和可见分光光度法,然后测定Zeta电位。通过使用3,3,5,5-四甲基联苯胺(TMB)氧化反应测定活性氧(ROS)的产生。在细菌感染的小鼠模型中评价合成的HMn-Ca的伤口愈合效果。介孔硅中MnO和CaO的负载增强了ROS的生成和细菌捕获能力,随后分解细菌膜,导致细菌膜被刺穿,随后是细胞死亡。因此,HMn-Ca治疗可以改善细菌感染伤口的愈合,说明了一种直接但有效的方法,用于工程化为抗菌疗法量身定制的纳米酶。
公众号