关键词: High-light stress chassis cyanobacteria engineering microalgae photoprotection

来  源:   DOI:10.1080/07388551.2024.2357368

Abstract:
Oxygenic photosynthesis in microalgae and cyanobacteria is considered an important chassis to accelerate energy transition and mitigate global warming. Currently, cultivation systems for photosynthetic microbes for large-scale applications encountered excessive light exposure stress. High light stress can: affect photosynthetic efficiency, reduce productivity, limit cell growth, and even cause cell death. Deciphering photoprotection mechanisms and constructing high-light tolerant chassis have been recent research focuses. In this review, we first briefly introduce the self-protection mechanisms of common microalgae and cyanobacteria in response to high light stress. These mechanisms mainly include: avoiding excess light absorption, dissipating excess excitation energy, quenching excessive high-energy electrons, ROS detoxification, and PSII repair. We focus on the species-specific differences in these mechanisms as well as recent advancements. Then, we review engineering strategies for creating high-light tolerant chassis, such as: reducing the size of the light-harvesting antenna, optimizing non-photochemical quenching, optimizing photosynthetic electron transport, and enhancing PSII repair. Finally, we propose a comprehensive exploration of mechanisms: underlying identified high light tolerant chassis, identification of new genes pertinent to high light tolerance using innovative methodologies, harnessing CRISPR systems and artificial intelligence for chassis engineering modification, and introducing plant photoprotection mechanisms as future research directions.
摘要:
微藻和蓝细菌中的氧合光合作用被认为是加速能源转换和缓解全球变暖的重要基础。目前,用于大规模应用的光合微生物培养系统遇到了过度的光照胁迫。强光胁迫可以:影响光合效率,降低生产率,限制细胞生长,甚至导致细胞死亡。破译光保护机制和构建高耐光性底盘一直是最近的研究重点。在这次审查中,我们首先简要介绍了常见微藻和蓝藻对强光胁迫的自我保护机制。这些机制主要包括:避免过度的光吸收,耗散多余的激发能量,猝灭过多的高能电子,ROS解毒,和PSII修复。我们专注于这些机制的物种特异性差异以及最新进展。然后,我们回顾了创建高耐光性底盘的工程策略,例如:减小光捕获天线的尺寸,优化非光化学猝灭,优化光合电子传递,并增强PSII修复。最后,我们提出了一个全面的机制探索:底层确定的高耐光底盘,使用创新方法鉴定与高耐光性相关的新基因,利用CRISPR系统和人工智能进行底盘工程改造,并介绍植物光保护机制作为未来的研究方向。
公众号