关键词: 3D-printing Bone regeneration Bredigite scaffold Fullerol nanoparticle Reactive oxygen species

来  源:   DOI:10.1016/j.mtbio.2024.101120   PDF(Pubmed)

Abstract:
Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted \"FPBS\") for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair.
摘要:
活性氧在组织修复中起着至关重要的作用,骨缺损周围氧化还原稳态的不平衡会损害成骨。然而,抗氧化能力不足和成骨性能弱仍然是骨支架材料的主要障碍。在这里,整合贻贝启发的聚多巴胺(PDA)涂层和3D打印技术,我们利用成骨bredigite和抗氧化富勒醇的优点来构建3D打印多孔,可生物降解的酸缓冲,活性氧(ROS)清除和坚固的成骨生物支架(称为“FPBS”),用于氧化应激微环境下的原位骨缺损修复。最初,富勒醇纳米颗粒通过与PDA的共价交联连接到bredigite支架的表面。受伤时,胞外ROS捕获触发了PDA的氧化降解,释放富勒醇纳米颗粒进入细胞以进一步清除细胞内ROS。体外,FPBS具有良好的生物相容性和优异的抗氧化能力。此外,FPBS促进干细胞成骨,成骨标志物显著升高。最后,在大鼠临界颅骨缺损模型中,体内植入FPBS可显着增强新骨形成。总的来说,损伤组织ROS微环境的改善和干细胞成骨分化的增强,FPBS可能具有修复骨缺损的巨大潜力。
公众号