关键词: Silver nanocomposites biosynthesis Spore-formers Synergism antimicrobial Activity antioxidant activity lactobacilli multidrug resistant bacteria sustainable whey- based medium

Mesh : Nanocomposites / chemistry Silver / chemistry pharmacology Whey / chemistry metabolism Microbial Sensitivity Tests Lactobacillus acidophilus / drug effects metabolism Anti-Bacterial Agents / pharmacology chemistry biosynthesis Metal Nanoparticles / chemistry Lactobacillus / metabolism Anti-Infective Agents / pharmacology chemistry Spectroscopy, Fourier Transform Infrared

来  源:   DOI:10.1186/s12934-024-02428-8   PDF(Pubmed)

Abstract:
This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.
摘要:
这项研究探索了使用安全的乳杆菌菌株和乳清基培养基(WBM)合成具有增强的抗菌和生物活性的银纳米复合材料(AgNCs)的可持续方法。WBM有效地支持了德氏乳杆菌和嗜酸乳杆菌的生长,引发应激反应,导致AgNCs形成。合成的AgNCs使用先进的光谱和成像技术进行表征,如UV-可见光,傅里叶变换红外(FT-IR)光谱,透射电子(TEM),和扫描电子显微镜与能量色散X射线分析(SEM-Edx)。嗜酸乳杆菌在WBM中合成的AgNCs(DLS平均尺寸为817.2-974.3±PDI=0.441nm,金属芯平均尺寸为13.32±3.55nm)对广谱病原体表现出显着的抗菌活性,包括细菌,如大肠杆菌(16.47±2.19nm),蜡样芽孢杆菌(15.31±0.43nm),产气荚膜梭菌(25.95±0.03mm),粪肠球菌(32.34±0.07mm),单核细胞增生李斯特菌(23.33±0.05mm),耐甲氧西林金黄色葡萄球菌(MRSA)(13.20±1.76mm),和丝状真菌,例如巴西曲霉(33.46±0.01mm)。此外,嗜酸乳杆菌在WBM中合成的AgNCs表现出明显的自由基清除能力,表明它们作为生物可利用的抗氧化剂的潜力。这些发现突出了这些生物AgNCs的双重功能,使它们成为医学和营养学应用的有希望的候选人。
公众号