Mesh : Robotics / methods instrumentation Neural Networks, Computer Bionics Central Pattern Generators / physiology Fuzzy Logic Computer Simulation Motion Swimming / physiology Algorithms

来  源:   DOI:10.1371/journal.pone.0306320   PDF(Pubmed)

Abstract:
To achieve the accuracy and anti-interference of the motion control of the soft robot more effectively, the motion control strategy of the pneumatic soft bionic robot based on the improved Central Pattern Generator (CPG) is proposed. According to the structure and motion characteristics of the robot, a two-layer neural network topology model for the robot is constructed by coupling 22 Hopfield neuron nonlinear oscillators. Then, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS), the membership functions are offline learned and trained to construct the CPG-ANFIS-PID motion control strategy for the robot. Through simulation research on the impact of CPG-ANFIS-PID input parameters on the swimming performance of the robot, it is verified that the control strategy can quickly respond to input parameter changes between different swimming modes, and stably output smooth and continuous dynamic position signals, which has certain advantages. Then, the motion performance of the robot prototype is analyzed experimentally and compared with the simulation results. The results show that the CPG-ANFIS-PID motion control strategy can output coupled waveform signals stably, and control the executing mechanisms of the pneumatic soft bionic robot to achieve biological rhythms motion propulsion waveforms, confirming that the control strategy has accuracy and anti-interference characteristics, and enable the robot have certain maneuverability, flexibility, and environmental adaptability. The significance of this work lies in establishing a CPG-ANFIS-PID control strategy applicable to pneumatic soft bionic robot and proposing a rhythmic motion control method applicable to pneumatic soft bionic robot.
摘要:
为了更有效地实现软机器人运动控制的准确性和抗干扰性,提出了基于改进的中央模式发生器(CPG)的气动软仿生机器人运动控制策略。根据机器人的结构和运动特点,通过耦合22个Hopfield神经元非线性振荡器,构建了机器人的两层神经网络拓扑模型。然后,基于自适应神经模糊推理系统(ANFIS),离线学习和训练隶属度函数,以构建机器人的CPG-ANFIS-PID运动控制策略。通过仿真研究CPG-ANFIS-PID输入参数对机器人游泳性能的影响,验证了该控制策略能够快速响应输入参数在不同游泳模式之间的变化,并稳定输出平滑和连续的动态位置信号,具有一定的优势。然后,对机器人样机的运动性能进行了实验分析,并与仿真结果进行了比较。结果表明,CPG-ANFIS-PID运动控制策略能够稳定输出耦合波形信号,并控制气动软仿生机器人的执行机构,实现生物节律运动推进波形,确认控制策略具有准确性和抗干扰特性,并使机器人具有一定的可操作性,灵活性,和环境适应性。这项工作的意义在于建立了适用于气动软仿生机器人的CPG-ANFIS-PID控制策略,提出了适用于气动软仿生机器人的有节奏运动控制方法。
公众号