关键词: Band structure Charge transfer Covalent triazine frameworks Environmental applications Intrinsic modification Photocatalysis

来  源:   DOI:10.1016/j.heliyon.2024.e32202   PDF(Pubmed)

Abstract:
Heterogeneous photocatalysis emerges as an exceptionally appealing technological avenue for the direct capture, conversion, and storage of renewable solar energy, facilitating the generation of sustainable and ecologically benign solar fuels and a spectrum of other pertinent applications. Heterogeneous nanocomposites, incorporating Covalent Triazine Frameworks (CTFs), exhibit a wide-ranging spectrum of light absorption, well-suited electronic band structures, rapid charge carrier mobility, ample resource availability, commendable chemical robustness, and straightforward synthetic routes. These attributes collectively position them as highly promising photocatalysts with applicability in diverse fields, including but not limited to the production of photocatalytic solar fuels and the decomposition of environmental contaminants. As the field of photocatalysis through the hybridization of CTFs undergoes rapid expansion, there is a pressing and substantive need for a systematic retrospective analysis and forward-looking evaluation to elucidate pathways for enhancing performance. This comprehensive review commences by directing attention to diverse synthetic methodologies for the creation of composite materials. And then it delves into a thorough exploration of strategies geared towards augmenting performance, encompassing the introduction of electron donor-acceptor (D-A) units, heteroatom doping, defect Engineering, architecture of Heterojunction and optimization of morphology. Following this, it systematically elucidates applications primarily centered around the efficient generation of photocatalytic hydrogen, reduction of carbon dioxide through photocatalysis, and the degradation of organic pollutants. Ultimately, the discourse turns towards unresolved challenges and the prospects for further advancement, offering valuable guidance for the potent harnessing of CTFs in high-efficiency photocatalytic processes.
摘要:
非均相光催化成为一种非常有吸引力的直接捕获技术途径,转换,和可再生太阳能的储存,促进可持续和生态良性太阳能燃料的产生以及一系列其他相关应用。异质纳米复合材料,掺入共价三嗪框架(CTF),表现出广泛的光吸收光谱,非常适合的电子带结构,快速电荷载流子迁移率,充足的资源可用性,值得称赞的化学稳健性,和简单的合成路线。这些属性共同将它们定位为在不同领域具有适用性的非常有前途的光催化剂,包括但不限于光催化太阳能燃料的生产和环境污染物的分解。随着通过CTFs杂交的光催化领域经历快速扩张,迫切需要进行系统的回顾性分析和前瞻性评估,以阐明提高绩效的途径。这项全面的审查首先要注意用于制造复合材料的各种合成方法。然后,它深入研究了旨在提高绩效的策略,包括引入电子供体-受体(D-A)单元,杂原子掺杂,缺陷工程,异质结结构和形貌优化。在此之后,它系统地阐述了主要围绕光催化氢的有效产生的应用,通过光催化减少二氧化碳,和有机污染物的降解。最终,讨论转向尚未解决的挑战和进一步发展的前景,为高效光催化过程中CTF的有效利用提供了有价值的指导。
公众号