关键词: Bile salts Free fatty acids Micelles Pea proteins

Mesh : Bile Acids and Salts / metabolism chemistry Lipolysis Digestion Pea Proteins / chemistry metabolism Pisum sativum / chemistry metabolism Peptides / metabolism chemistry Duodenum / metabolism Humans

来  源:   DOI:10.1016/j.foodres.2024.114624

Abstract:
The present work evaluated how a native pea protein isolate (PPI) affects the key roles carried out by bile salts (BS) in lipid digestion by means of the in vitro static INFOGEST protocol. Two gastric residence times were evaluated (10 and 60 min), and then the peptides obtained (GPPP) were mixed with BS at physiological concentration in simulated intestinal fluid to understand how they interact with BS both at the bulk and at the interface. Both GPPP give rise to a film with a predominant viscous character that does not constitute a barrier to the penetration of BS, but interact with BS in the bulk duodenal fluid. When the peptides flushing from the stomach after the different gastric residence times undergo duodenal digestion, it was found that for the longer gastric residence time the percentage of soluble fraction in the duodenal phase, that perform synergistically with BS micelles, was twice that of the lower residence time, leading to an increase in the solubilization of oleic acid. These results finally lead to a greater extent of lipolysis of olive oil emulsions. This work demonstrates the usefulness of in vitro models as a starting point to study the influence of gastric residence time of pea protein on its interaction with BS, affecting lipolysis. Pea proteins were shown to be effective emulsifiers that synergistically perform with BS improving the release and bioaccessibility of bioactive lipids as olive oil.
摘要:
本工作通过体外静态INFOGEST方案评估了天然豌豆蛋白分离物(PPI)如何影响胆汁盐(BS)在脂质消化中发挥的关键作用。评估了两个胃停留时间(10和60分钟),然后将获得的肽(GPPP)与模拟肠液中生理浓度的BS混合,以了解它们如何在主体和界面处与BS相互作用。两种GPPP都产生了具有主要粘性特征的薄膜,该薄膜不构成BS渗透的障碍,但与大量十二指肠液中的BS相互作用。当在不同的胃停留时间后从胃中冲洗出来的肽经历十二指肠消化时,发现对于较长的胃停留时间,十二指肠相中可溶性部分的百分比,与BS胶束协同作用,是较低停留时间的两倍,导致油酸溶解的增加。这些结果最终导致橄榄油乳液的更大程度的脂解。这项工作证明了体外模型作为研究豌豆蛋白的胃停留时间对其与BS相互作用的影响的起点的有用性,影响脂解。豌豆蛋白被证明是有效的乳化剂,可与BS协同作用,改善生物活性脂质如橄榄油的释放和生物可及性。
公众号