关键词: Pinus elliottii Adsorption Chromium VI Pyrolysis Termite

Mesh : Charcoal / chemistry Lignin / chemistry Chromium / chemistry Animals Cellulose / chemistry Biomass Adsorption Isoptera / chemistry Water Pollutants, Chemical / chemistry Pyrolysis Pinus / chemistry Water Purification / methods Spectroscopy, Fourier Transform Infrared

来  源:   DOI:10.1038/s41598-024-65959-5   PDF(Pubmed)

Abstract:
The increasing water contamination by toxic heavy metals, particularly hexavalent chromium, has become a significant environmental concern. This study explores the pyrolysis of termite-processed biomass, specifically Pinus elliottii particleboard and its termite droppings (TDs), to produce biochar and its application for chromium (VI) adsorption. Termite droppings, rich in lignin, and particleboard, rich in cellulose, were pyrolyzed at various temperatures to assess the effect of biomass composition on biochar properties. The study found that lignin-rich termite droppings produced biochar with higher fixed carbon content and specific surface area than cellulose-rich particleboard biochar. FTIR and Raman spectroscopy revealed significant molecular structure changes during pyrolysis, which influenced the adsorption capabilities of the biochar. Adsorption experiments demonstrated that TD biochar exhibited significantly higher chromium (VI) adsorption capacity, attributed to its distinct chemical composition and enhanced surface properties due to higher lignin content. These findings underscore the crucial role of lignin in producing efficient biochar for heavy metal adsorption, highlighting the practical applicability of termite-processed biomass in water purification technologies.
摘要:
有毒重金属对水污染的增加,特别是六价铬,已经成为一个重大的环境问题。本研究探索了白蚁加工生物质的热解,特别是湿地松刨花板及其白蚁粪便(TD),制备生物炭及其对铬(Ⅵ)吸附的应用。白蚁粪便,富含木质素,和刨花板,富含纤维素,在各种温度下热解以评估生物质组成对生物炭性质的影响。研究发现,与富含纤维素的刨花板生物炭相比,富含木质素的白蚁粪便产生的生物炭具有更高的固定碳含量和比表面积。FTIR和拉曼光谱揭示了热解过程中分子结构的显著变化,这影响了生物炭的吸附能力。吸附实验表明,TD生物炭表现出较高的铬(VI)吸附能力,归因于其独特的化学组成和由于较高的木质素含量而增强的表面特性。这些发现强调了木质素在生产用于重金属吸附的高效生物炭中的关键作用,强调白蚁处理生物质在净水技术中的实际适用性。
公众号