关键词: Biological activity Hydrophilicity Surface modification Titanium implant

Mesh : Titanium / chemistry Animals Surface Properties Mice Osteoblasts / cytology Cell Adhesion Biocompatible Materials Prostheses and Implants Materials Testing Cell Line Ultraviolet Rays Hydrophobic and Hydrophilic Interactions

来  源:   DOI:10.7507/1001-5515.202308049   PDF(Pubmed)

Abstract:
The surface morphology of titanium metal is an important factor affecting its hydrophilicity and biocompatibility, and exploring the surface treatment strategy of titanium metal is an important way to improve its biocompatibility . In this study , titanium (TA4) was firstly treated by large particle sand blasting and acid etching (SLA) technology, and then the obtained SLA-TA4 was treated by single surface treatments such as alkali-heat, ultraviolet light and plasma bombardment. According to the experimental results, alkali-heat treatment is the best treatment method to improve and maintain surface hydrophilicity of titanium. Then, the nanowire network morphology of titanium surface and its biological property, formed by further surface treatments on the basis of alkali-heat treatment, were investigated. Through the cell adhesion experiment of mouse embryonic osteoblast cells (MC3T3-E1), the ability of titanium material to support cell adhesion and cell spreading was investigated after different surface treatments. The mechanism of biological activity difference of titanium surface formed by different surface treatments was investigated according to the contact angle, pit depth and roughness of the titanium sheet surface. The results showed that the SLA-TA4 titanium sheet after a treatment of alkali heat for 10 h and ultraviolet irradiation for 1 h has the best biological activity and stability. From the perspective of improving surface bioactivity of medical devices, this study has important reference value for relevant researches on surface treatment of titanium implantable medical devices.
钛金属的表面形貌是影响其亲水性及生物相容性的重要因素,探究钛金属表面处理策略是提高其生物相容性的重要途径。本文先采用大颗粒喷砂酸蚀技术(SLA)处理钛金属A4(TA4),对得到的SLA-TA4进行碱热、紫外光照及等离子体轰击等单一方式表面处理。根据实验结果得出,碱热处理是提高并保持钛金属SLA-TA4亲水性的最佳单一处理方法。随后,在碱热处理的基础上,继续研究多种表面处理方式形成的钛金属表面纳米线网络结构及其生物性能。通过小鼠胚胎成骨前体细胞MC3T3-E1黏附实验,比较了不同方式表面处理后,钛金属材料支持细胞黏附、细胞铺展的能力,并根据不同表面处理方式形成的材料表面接触角、微坑深度及粗糙度等参数,分析探讨多种表面处理方式造成的生物活性差异的机制。结果表明,经碱热处理10 h及紫外照射1 h处理后的SLA-TA4 表现出最佳的生物活性及稳定性。从提高医疗器械表面生物活性的角度考虑,本文研究结果或对钛金属植入性器械的表面处理相关研究提供有价值的参考。.
摘要:
暂无翻译
公众号