关键词: Encapsulation Nanogels Nanoparticles Self-assembly α-cyclodextrin

Mesh : Mannose / chemistry alpha-Cyclodextrins / chemistry Hydrophobic and Hydrophilic Interactions Nanogels / chemistry Peptides / chemistry Polyethylene Glycols / chemistry Particle Size Solubility

来  源:   DOI:10.1016/j.ijpharm.2024.124379

Abstract:
Nanogels are aqueous dispersions of hydrogel particles formed by physically or chemically cross-linked polymer networks of nanoscale size. Herein, we devised a straightforward technique to fabricate a novel class of physically cross-linked nanogels via a self-assembly process in water involving α-cyclodextrin and a mannose molecule that was hydrophobically modified using an alkyl chain. The alkyl chain-modified mannose was synthesized in five steps, starting with D-mannose. Subsequently, nanogels were formed by subjecting α-cyclodextrin and the hydrophobically modified mannose to magnetic stirring in water. By adjusting the mole ratio between the hydrophobically modified mannose and α-cyclodextrin, nanogels with an average 100-150 nm diameter were obtained. Physicochemical and structural analyses by 1H NMR and X-ray diffraction unveiled a supramolecular and hierarchical mechanism underlying the creation of these nanogels. The proposed mechanism of nanogel formation involves two distinct steps: initial interaction of hydrophobically modified mannose with α-cyclodextrin resulting in the formation of inclusion complexes, followed by supramolecular interactions among these complexes, ultimately leading to nanogel formation after 72 h of stirring. We demonstrated the nanogels\' ability to encapsulate a short peptide ([p-tBuF2, R5]SHf) as a water-soluble drug model. This discovery holds promise for potentially utilizing these nanogels in drug delivery applications.
摘要:
纳米凝胶是由纳米级大小的物理或化学交联的聚合物网络形成的水凝胶颗粒的水性分散体。在这里,我们设计了一种简单的技术,通过在水中的自组装过程制造一类新型的物理交联的纳米凝胶,该过程涉及α-环糊精和使用烷基链进行疏水修饰的甘露糖分子。通过五个步骤合成了烷基链修饰的甘露糖,从D-甘露糖开始.随后,通过使α-环糊精和疏水改性的甘露糖在水中经受磁力搅拌形成纳米凝胶。通过调节疏水改性甘露糖与α-环糊精的摩尔比,获得平均直径为100-150nm的纳米凝胶。通过1HNMR和X射线衍射进行的物理化学和结构分析揭示了这些纳米凝胶产生的超分子和分层机制。提出的纳米凝胶形成机制涉及两个不同的步骤:疏水修饰的甘露糖与α-环糊精的初始相互作用,导致包合物的形成。然后是这些复合物之间的超分子相互作用,最终导致72小时的搅拌后纳米凝胶的形成。我们证明了纳米凝胶封装短肽([p-tBuF2,R5]SHf)作为水溶性药物模型的能力。这一发现有望在药物递送应用中潜在地利用这些纳米凝胶。
公众号