关键词: BrlR-C optical fiber Microbiologically influenced corrosion (MIC) Pseudomonas aeruginosa Surface plasma resonance (SPR)

Mesh : Pseudomonas aeruginosa / isolation & purification Surface Plasmon Resonance / methods Pyocyanine / analysis chemistry Biosensing Techniques / methods Biofilms Fiber Optic Technology Corrosion Optical Fibers Seawater / microbiology chemistry Equipment Design

来  源:   DOI:10.1016/j.bios.2024.116521

Abstract:
Oceanic facilities and equipment corrosion present considerable economic and safety concerns, predominantly due to microbial corrosion. Early detection of corrosive microbes is pivotal for effective monitoring and prevention. Yet, traditional detection methods often lack specificity, require extensive processing time, and yield inaccurate results. Hence, the need for an efficient real-time corrosive microbe monitoring technology is evident. Pseudomonas aeruginosa, a widely distributed microorganism in aquatic environments, utilizes its production of quinone-like compounds, specifically pyocyanin (PYO), to corrode metals. Here, we report a novel fiber optic surface plasmon resonance (SPR) sensor modified by the C-terminal of BrlR protein (BrlR-C), which is a specific receptor of PYO molecule, to detect P. aeruginosa in aquatic environments. The results showed that the sensor had a good ability to recognize PYO in the concentration range of 0-1 μg/mL, and showed excellent sensing performance in real-time monitoring the growth status of P. aeruginosa. With a strong selectivity of PYO, the sensor could clearly detect P. aeruginosa against other bacteria in seawater environment, and exhibited excellent anti-interference ability against variations in pH, temperature and pressure and other interfering substances. This study provides a useful tool for monitoring corrosive P. aeruginosa biofilm in aquatic environments, which is a first of its kind example that serves as a laboratory model for the application of fiber optic technology in real-world scenarios to monitoring biofilms in microbial corrosion and biofouling.
摘要:
海洋设施和设备腐蚀带来了相当大的经济和安全问题,主要是由于微生物腐蚀。早期发现腐蚀性微生物是有效监测和预防的关键。然而,传统的检测方法往往缺乏特异性,需要大量的处理时间,并产生不准确的结果。因此,对有效的实时腐蚀性微生物监测技术的需求是显而易见的。铜绿假单胞菌,在水生环境中广泛分布的微生物,利用其生产的醌类化合物,特别是铜氰素(PYO),腐蚀金属。这里,我们报道了一种由BrlR蛋白(BrlR-C)的C端修饰的新型光纤表面等离子体共振(SPR)传感器,它是PYO分子的特异性受体,在水生环境中检测铜绿假单胞菌。结果表明,该传感器在0-1μg/mL浓度范围内对PYO具有良好的识别能力,在实时监测铜绿假单胞菌生长状况方面表现出优异的传感性能。具有较强的PYO选择性,该传感器可以清楚地检测出海水环境中铜绿假单胞菌对其他细菌的影响,对pH值变化表现出优异的抗干扰能力,温度和压力以及其他干扰物质。本研究为监测水生环境中的腐蚀性铜绿假单胞菌生物膜提供了有用的工具。这是第一个这样的例子,作为一个实验室模型,用于在现实世界中应用光纤技术来监测微生物腐蚀和生物污染中的生物膜。
公众号