关键词: beverage cans crashworthiness crush behavior energy absorption polyurethane foam thin-walled structures

来  源:   DOI:10.3390/ma17112655   PDF(Pubmed)

Abstract:
In the pursuit of global energy conservation and emissions reductions, utilizing beverage cans as energy-absorbing components offers potential for a sustainable economy. This study examines the impact of foam filling on the crushing behaviors and energy absorption of various types of beverage cans. Quasi-static compression tests were conducted on five geometrically sized cans filled with three densities of polyurethane foam to study their deformation modes and calculate crashworthiness parameters within the effective stroke. Results show that empty beverage cans have lower energy absorption capacities, and deformation modes become less consistent as can size increases. Higher foam density leads to increased total energy absorption, a slight reduction in the effective compression stroke, and a tendency for specific energy absorption to initially increase and then decrease. Regarding crush behavior, smaller cans transition from a diamond mode to a concertina mode, while larger cans exhibit a columnar bending mode. Next, the coupling effect of energy absorption between foam and cans was analyzed so as to reveal the design method of energy-absorbing components. The specific energy absorption of smaller cans filled with polyurethane foam is superior to that of similar empty cans. These findings provide valuable insights for selecting next-generation sustainable energy absorption structures.
摘要:
为了追求全球节能减排,利用饮料罐作为能量吸收组件为可持续经济提供了潜力。这项研究考察了泡沫填充对各种类型的饮料罐的破碎行为和能量吸收的影响。对五个几何尺寸的罐体进行了准静态压缩测试,其中装有三种密度的聚氨酯泡沫,以研究其变形模式并计算有效行程内的耐撞性参数。结果表明,空饮料罐具有较低的能量吸收能力,随着尺寸的增加,变形模式变得不那么一致。较高的泡沫密度导致总能量吸收增加,有效压缩冲程的轻微减少,以及比能量吸收最初增加然后减少的趋势。关于挤压行为,较小的罐头从钻石模式过渡到手风琴模式,而较大的罐呈现柱状弯曲模式。接下来,分析了泡沫与罐之间能量吸收的耦合效应,从而揭示了能量吸收部件的设计方法。填充有聚氨酯泡沫的较小罐的比能量吸收优于类似的空罐。这些发现为选择下一代可持续能量吸收结构提供了有价值的见解。
公众号